بررسی اثر کشنده و زیرکشنده حشره کش پالیزین و تنش شوری روی شته Aphis gossypii در شرایط آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی باغبانی، مجتمع آموزش عالی تربت جام، تربت جام، ایران.

چکیده

چکیده
شته جالیز، Aphis gossypii ، یکی از آفات اقتصادی خربزه است که قدرت سازگاری بالایی با شرایط محیطی مختلف از جمله شوری دارد. در این تحقیق، اثرات کشنده و زیر کشنده (LD10) حشره­ کش صابونی پالیزین بر شته جالیز پرورش یافته روی گیاهچه ­های خربزه، در چهار سطح کلرید سدیم (صفر، 20، 40 و 60 میلی مولار) به صورت فاکتوریل بر مبنای طرح کاملا تصادفی، در شرایط  اتاقک رشد مورد بررسی قرار گرفت. زیست سنجی بر اساس روش غوطه وری برگ در محلول سمی صورت گرفت. مقادیر LD50 پالیزین علیه شته ­های بالغ بعد از 24 ساعت به ترتیب 1378، 1036، 860 و 749 پی­پی­ام برای تیمارهای مذکور برآورد شد. نتایج نشان داد، ارتباط معکوسی بین سمیت پالیزین با افزایش غلظت شوری وجود دارد. برای تعیین تاثیر LD10 پالیزین بر شته، فراسنجه ­های زیستی باروری حشره در هر تیمار شوری بر اساس تئوری جدول زندگی دو جنسی ویژه سن-مرحله زیستی تعیین گردید. در شته ­های تیمار شده نسبت به شته ­هایی که تحت شرایط شوری مشابهی پرورش یافتند، پوره ­ها دوره رشد و نموی طولانی­ تری داشتند اما حشرات بالغ از عمر کوتاه­ تر و توانایی زادآوری کمتر برخوردار بودند. از سویی فراسنجه ­های جمعیتی شته ­ها نیز تحت تاثیر پالیزین قرار گرفت. میانگین نرخ ذاتی افزایش جمعیت از 31/0 ماده/ماده/روز تا 17/0 ماده/ماده/روز و میانگین مدت زمان یک نسل از 16/11 روز تا 65/12 روز بین تیمارهای شوری صفر تا 60 میلی مولار تغییر کرد. بر اساس نتایج به دست آمده، می ­توان حشره­ کش پالیزین به همراه تنش شوری را برای مدیریت تلفیقی موفق شته جالیز روی خربزه توصیه کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Lethal and sub-lethal effects of palizin insecticide and salinity stress on Aphis gossypii in vitro

نویسندگان [English]

  • Hossein Nastari Nasrabadi
  • Hamideh Tabasian
Department of Horticulture Science and Engineering, University of Torbat-e Jam, Torbat-e Jam, Iran.
چکیده [English]

Abstract
Melon aphid Aphis gossypii is one of the economic pests of melon that has a high adaptability to various environmental conditions, including salinity. In this study, the lethal and sub-lethal (LD10) effects of Palizin soap insecticide (0, 450, 696, 1078, 1669, 2583 and 4000 ppm) were investigated on A. gossypii reared on melon seedlings under salinity stress (0, 20, 40 and 60 mM) in a Factorial experiment based on completely random design in growth chamber (25 ± 1°C, %70 ± 5 RH and 16L/8D h photoperiod). Bioassay was performed based on leaf deep bioassay method. The LD50 values after 24 hours were estimated as 1378, 1036, 860 and 749 ppm for treatments, respectively. An inverse relationship was observed between the toxicity of Palizin and increase in salinity. To determine the effect of LD10 of Palizin on aphids, biological parameters of insect fertility in each salinity treatment were determined based on the age-stage, two-sex life table theory. The nymphs had longer development duration in treated aphids than aphids that grew under similar salinity conditions, but adult insects had a shorter longevity and less fecundity. The average of intrinsic rate of increase varied from 0.31 to 0.17 ♀/♀/days-1 and the average of generation time varied from 11.16 to 12.65 days between 0 and 60 mM salinity treatments. Based on the results, Palizin insecticide with salinity stress can be recommended for successful integrated management of aphid on melon under salinity stress conditions.
 

کلیدواژه‌ها [English]

  • Key words: Aphid
  • Fecundity
  • Palizin
  • Melon
  • Salinity
References
Abbott WS, 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18 (2): 265–267.
Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, et al., 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1): 1–18.
Akrami M, Arzani A, 2018. Physiological alterations due to field salinity stress in melon (Cucumis melo L.). Acta Physiologiae Plantarum 40 (5): 91.
Akrami M, Arzani A, 2019. Inheritance of fruit yield and quality in melon (Cucumis melo L.) grown under field salinity stress. Scientific Reports 9 (1): 1–13.
Amini Jam N, 2018. Effect of botanical insecticides, Dayabon® and Palizin® against Aphis fabae Scopoli (Hem.: Aphididae) and functional response of its parasitoid wasp, Lysiphlebus fabarum (Marshall) (Hym.: Braconidae). Plant Pests Research 7 (4): 13–28 (In Persian with English abstract).
Araya F, Abarca O, Zúñiga GE, Corcuera LJ, 1991. Effects of NaCl on glycine-betaine and on aphids in cereal seedlings. Phytochemistry 30 (6): 1793–1795.
Baghani j, Alizadeh A, Ansari H, Azizi M, 2015. Effect of water quality and drip irrigation management on yield and water use efficiency in late summer melon. Journal of Water and Soil Science 29 (3): 560–568 (In Persian with English abstract).
Ballhorn DJ, Elias JD, 2014. Salinity-mediated cyanogenesis in white clover (Trifolium repens) affects trophic interactions. Annals of Botany 114 (2): 357–366.
Bandani AR, Butt TM, 1999. Insecticidal, antifeedant and growth inhibitory activities of efrapeptins, metabolites of the fungus Tolypocladium. Biocontrol Science and Technology 9 (4): 499–506.
Baniameri V, 2008. Study of the efficacy of different concentrations of insecticidal soap, in comparison oxydemeton-methyl (Metasystox) to control Aphis gossypii in greenhouse cucumber. IOBC WPRS BULLETIN 32: Pp. 13.
Blackman RL, Eastop VF, 1984. Aphids on the World's Crops. An Identification and Information Guide. 1th edition,  John Wiley.  476 pp.
Carson R, 2002. Silent Spring. Houghton Mifflin Harcourt. 297 pp.
Chan CK, Forbes AR, Raworth DA, 1991. Aphid-transmitted Viruses and Their Vectors of the World. Research Branch. Agriculture Canada. 224 pp.
Chi H, 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology 17 (1): 26–34.
Chi H, 2016. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. URL h ttp. Natianonal Chung Hsing University, Taichung, Taiw.(http://140.120.197.173/Ecology/.Download/Twosex-MSChart.rar/)
Chi H, Liu H, 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica 24 (2): 225–240.
Chinnusamy V, Jagendorf A, Zhu J-K, 2005. Understanding and improving salt tolerance in plants. Crop Science 45 (2): 437–448.
Cui L, Yuan H, Wang Q, Wang Q, Rui C, 2018. Sublethal effects of the novel cis-nitromethylene neonicotinoid cycloxaprid on the cotton aphid Aphis gossypii Glover (Hemiptera: Aphididae). Scientific Reports 8 (1): 1–9.
Din ZM, Malik TA, Azhar FM, Ashraf M, 2016. Natural resistance against insect pests in cotton. Journal of Animal and Plant Sciences 26 (5): 1346–1353.
Epstein E, 1972. Mineral nutrition of plants: principles and perspectives. 1th edition, John Wiley and Sons, Inc.  412 pp.
Forieri I, Hildebrandt U, Rostás M, 2016. Salinity stress effects on direct and indirect defence metabolites in maize. Environmental and Experimental Botany 122: 68–77.
Gholamzadeh-Chitgar M, 2017. Effect of insecticidal soap, Palizin on the crapemyrtle aphid, Tinocallis kahawaluokalani and its coccinellid predator, Harmonia axyridis under laboratory conditions Plant Pest Research 6 (4): 89–95 (In Persian with English abstract).
Hermoso de mendoza AH, Belliure B, Carbonell E, Real V, 2001. Economic thresholds for Aphis gossypii (Hemiptera: Aphididae) on Citrus clementina. Journal of Economic Entomology 94 (2): 439–444.
Heydari F, Naderi S, Khajeh H, Bahari AA, 2016. The effect of salinity in galactinol synthase (GAS) gene expression, antioxidant enzymes activity, carbohydrst and prolin in sistan melon landrace (Cucumis melo L.). Modern Genetics Journal 11 (2): 185–195 (In Persian with English abstract).
Honarmand P, Nouri G, Rafiee -Dastjerdi H, Hassanpour M, Fathi SAA, 2016. Lethal effect of three synthetic insecticides and two commerical botanical extracts on the Sunn pest, Eurygaster integriceps Puton under the field and laboratory conditions. Plant Pest Research 6 (3): 65–77 (In Persian with English abstract).
Hu D-W, Zhang S, Luo J-Y, Lü L-M, Cui J-J, et al., 2017. An example of host plant expansion of host-specialized Aphis gossypii Glover in the field. PloS One 12 (5): 1–13.
Huang YB, Chi H, 2012. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett)(Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Science 19 (2): 263–273.
Kabiri M, Amiri-Besheli B, 2012. Toxicity of Palizin, Mospilan and Consult on Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), Oenopia conglobata L.(Coleoptera: Coccinellidae) and Psyllaephagus pistaciae Ferrière (Hymenoptera: Encyrtidae). Academic Journal of Entomology 5 (2): 99–107.
Kersting U, Satar S, Uygun N, 1999. Effect of temperature on development rate and fecundity of apterous Aphis gossypii Glover (Hom., Aphididae) reared on Gossypium hirsutum L. Journal of Applied Entomology 123 (1): 23–27.
Klingler J, Powell G, Thompson GA, Isaacs R, 1998. Phloem specific aphid resistance in Cucumis melo line AR 5: effects on feeding behaviour and performance of Aphis gossypii. Entomologia Experimentalis et Applicata 86 (1): 79-88.
Kumar U, Berliner J, Adak T, Rath PC, Dey A, et al.,  2017. Non-target effect of continuous application of chlorpyrifos on soil microbes, nematodes and its persistence under sub-humid tropical rice-rice cropping system. Ecotoxicology and Environmental Safety 135: 225–235.
Kung KY, Chang KL, Chai KY, 1964. Detecting and measuring the resistance of cotton aphids to systox. Acta Entomologica Sinica 13 (1): 1–9.
LeOra Software V. 2003 Poloplus: Probit and Logit Analysis. User's Guide, Version 2.0. LeOra Software Company, Petaluma, CA.
Liang DN, Cao L, Song LL, Qi XH, Chen XH, 2016. Effects of stress from Aphis gossypii Glover on malondialdehyde content and protective enzymes activities in cucumber. Acta Horticulturae (Wageningen) 1129: 27–33.
Liengme B, 2015. A Guide to Microsoft Excel 2013 for Scientists and Engineers. Academic Press. 382 pp.
Mavrogianopoulos GN, Spanakis J, Tsikalas P, 1999. Effect of carbon dioxide enrichment and salinity on photosynthesis and yield in melon. Scientia Horticulturae 79 (1-2): 51–63.
Miao J, Reisig DD, Li G, Wu Y, 2016. Sublethal effects of insecticide exposure on Megacopta cribraria (Fabricius) nymphs: key biological traits and acetylcholinesterase activity. Journal of Insect Science 16 (1): 1–6.
Mirfakhraie S, Mohammadian P, 2017. Effects of botanical insectides Sirinol, Tondexir and repellency of Palizin on two spotted spider mite (Tetranychus urticae Koch) in the laboratory conditions. Plant Protection 40 (3): 1–12 (In Persian with English abstract).
Moghbeli Gharaei A, Estaji A, Shahidi Noghabi Sh, 2018. Evaluation of some physiological indices of resistance in different varieties of cucumber (Cucumis sativus L.) against cotton aphid, Aphis gossypii. Journal of Science and Technology of Greenhouse Culture 9 (3): 79–93 (In Persian with English abstract).
Nasrabadi HN, Nemati SH, Sobhani A, Sharifi M, 2012. Study on morphologic variation of different Iranian melon cultivars (Cucumis melo L.). African Journal of Agricultural Research 7 (18): 2764–2769.
Nicol D, Wratten SD, Eaton N, Copaja SV, 1993. Effects of DIMBOA levels in wheat on the susceptibility of the grain aphid (Sitobion avenue) to deltamethrin. Annals of Applied Biology 122 (3): 427–433.
Pan H, Liu Y, Liu B, Lu Y, Xu X, et al., 2014. Lethal and sublethal effects of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, on the mirid bug Apolygus lucorum. Journal of Pest Science 87 (4): 731–738.
Patel PR, Kajal SS, Patel VR, Patel VJ, Khristi SM, 2010. Impact of saline water stress on nutrient uptake and growth of cowpea. Brazilian Journal of Plant Physiology 22 (1): 43–48.
Pirmohammadi M, Mahdian K, Samih MA, Shahidi-Noghabi Sh, 2014. Sublethal effects of some plant extracts and imidachloprid on life table parameters of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Journal of Entomological Research 6 (3): 215–232. (In Persian with English abstract)
Qu Y, Xiao D, Li J, Chen Z, Biondi A, et al., 2015. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines. Ecotoxicology 24 (3): 479–487.
Quais MK, Ansari NA, Wang G-Y, Zhou W-W, Zhu Z-R, 2019. Host plant salinity stress affects the development and population parameters of Nilaparvata lugens (Hemiptera: Delphacidae). Environmental Entomology 48 (5): 1149–1161.
Quisenberry SS, Schotzko D, 1994. Integration of plant resistance with pest management methods in crop production systems. Journal of Agricultural Entomology 11 (3): 279–290.
Rahsepar A, Haghani M, Sedaratian-Jahromi A, Ghane-Jahromi M, Farrar N, 2016. Different cucumber (Cucumis sativus) varieties could affects biological performance of cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), a case study at laboratory condition. Entomofauna 37 (21): 353–364.
Rezaei N, Kocheyli F, Mossadegh MS, Talebi Jahromi K, Kavousi A, 2014. Effect of sublethal doses of thiamethoxam and pirimicarb on functional response of Diaeretiella rapae (Hymenoptera: Braconidae), parasitoid of Lipaphis erysimi (Hemiptera: Aphididae). Journal of Crop Protection 3 (4): 467–477.
Rix RR, Ayyanath MM, Cutler GC, 2016. Sublethal concentrations of imidacloprid increase reproduction, alter expression of detoxification genes, and prime Myzus persicae for subsequent stress. Journal of Pest Science 89 (2): 581–589.
Robertson JL, Preisler HK, 1992. Pesticide Bioassays with Arthropods. CRC Press, Boca Raton. USA. 127 pp.
Salehi R, Javanpour R, 2008. Vegetable crop production in Iran. Chronica Horticulturae 48 (4): 15–18.
Sánchez M, Agüero R, Rivera C, 2001. Host plants of Aphis gossypii (Aphididae), vector of virus of Cucumis melo melon (Cucurbitaceae) in Costa Rica. Revista de Biologia Tropical 49 (1): 305–311.
Satar S, Kersting U, Uygun N, 1999. Development and fecundity of Aphis gossypii Glover (Homoptera: Aphididae) on three Malvaceae hosts. Turkish Journal of Agriculture and Forestry 23 (6): 637–643.
Shafiee H, Haghighi M, Farhadi A, Ehtemam MH, 2019. The effect of salinity on physiological, biochemical and anatomical characteristics of different accession of melons. Plant Process and Function 8 (33): 325–338 (In Persian with English abstract).
Sharma HC, 2008. Biotechnological Approaches for Pest Management and Ecological Sustainability. 1th edition, CRC Press. 546 pp.
Sivritepe N, Eris A, 1999. Determination of salt tolerance in some grapevine cultivars (Vitis vinifera L.) under in vitro conditions. Turkish Journal of Biology 23 (4): 473–485.
Sivritepe N, Sivritepe HO, Eris A, 2003. The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Scientia Horticulturae 97 (3-4): 229–237.
Song MY, Brown JJ, 1998. Osmotic effects as a factor modifying insecticide toxicity on Aedes and Artemia. Ecotoxicology and Environmental Safety 41 (2): 195–202.
Southwood TRE, Henderson PA, 2000. Ecological Methods. 3th edition, Blackwell Science. 575 pp.
Studebaker GE, Kring TJ, 2003. Effects of insecticides on Orius insidiosus (Hemiptera: Anthocoridae), measured by field, greenhouse and petri dish bioassays. Florida Entomologist 86 (2): 178–185.
Tabasian H, Ravan S, Bandani AR, Siahsar BA, 2010. The effect of esterase activity in resistance of Aphis gossypii to selective insecticides. Journal of Food, Agriculture and Environment 8 (3 and 4): 1108–1112.
Tang Q, Xiang M, Hu H, An C, Gao X, 2015. Evaluation of sublethal effects of Sulfoxaflor on the green peach aphid (Hemiptera: Aphididae) using life table parameters. Journal of Economic Entomology 108 (6): 2720–2728.
Tanga MC, 2012. Bioecology of the mango mealybug, Rastrococcus iceryoides Green (Hemiptera: Pseudococcidae) and its associated natural enemies in Kenya and Tanzania.Ph.D. Thesis, University of Pretoria, Pretoria, South Africa.
Tavakoli B, Ajam Hosni M, 2017. Effect of Palizin, Diflubenzuron, Chlorpyrifos, Deltamethrin and Hexaflumuron on bio- demographic characteristic and feeding index of Flour moth, Anagasta kuehniella, (Lep: Pyralidae). Applied Plant Protection 6 (1): 25–33 (In Persian).
Trinklein D, 2016. Insecticidal Soaps: An Eco-friendly Method of Pest Control Missouri Environment and Garden News Article 573: 882–9631.
Tu HT, Silvestre F, De Meulder B, Thome J-P, Phuong NT, et al., 2012. Combined effects of deltamethrin, temperature and salinity on oxidative stress biomarkers and acetylcholinesterase activity in the black tiger shrimp (Penaeus monodon). Chemosphere 86 (1): 83–91.
Wang Q, Eneji AE, Kong X, Wang K, Dong H, 2015. Salt stress effects on secondary metabolites of cotton in relation to gene expression responsible for aphid development. PloS One 10 (6): 1–14.
Webster JA, Inayatullah C, Hamissou M, Mirkes K, 1994. Leaf pubescence effects in wheat on yellow sugarcane aphids and greenbugs (Homoptera: Aphididae). Journal of Economic Entomology 87 (1): 231–240.
Yousaf HK, Shan T, Chen X, Ma K, Shi X, et al., 2018. Impact of the secondary plant metabolite Cucurbitacin B on the demographical traits of the melon aphid, Aphis gossypii. Scientific Reports 8 (1): 1–10.
Zarpas KD, Margaritopoulos JT, Stathi L, Tsitsipis JA, 2006. Performance of cotton aphid Aphis gossypii (Hemiptera: Aphididae) lineages on cotton varieties. International Journal of Pest Management 52 (3): 225–232.

Zil’bermints IV, Zhuravleva LM, 1984. Response of melon and greenhouse aphids to Ambush and Actellic. Khimiya v Sel'skom Khozyaistve 3: 37–40.