زهرآگینی و القای پاسخ های ایمنی توسط دو جدایه قارچ Beauveria bassiana علیه لاروهای پروانه سفید درختان Hyphantria cunea

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده علوم کشاوری، دانشگاه گیلان، رشت، ایران.

2 موسسه تحقیقات گیاهپزشکی ایران، تحقیقات کشاورزی، آموزش و ترویج کشاورزی، آمل، ایران.

چکیده

چکیده
زهرآگینی دو جدایه ایرانی قارچ Beauveria bassiana  روی لاروهای پروانه سفید درختانHyphantria cunea   از طریق زیست­سنجی و ارزیابی واکنش­های ایمنی با شمارش سلول­های خونی و سنجش فعالیت آنزیم فنل­اکسیداز مورد ارزیابی قرار گرفت. غلظت­های کشنده میانه (LC50) شامل  105 × 8/8 و 106 × 3/2 اسپور بر میلی­لیتر به ترتیب برای جدایه­های AM-118 و BB3 با روش غوطه­وری لاروها به دست آمد. همچنین مقادیر LT50 نیز به ترتیب 94/3 و 78/5 روز محاسبه شد. بیش­ترین تعداد کل سلول­های خونی و همچنین گرانولوسیت­ها و پلاسماتوسیت­ها، 6-3 ساعت پس از تزریق هر دو جدایه قارچی مشاهده شد. به عبارت دیگر تعداد کل سلول­های خونی از 104×160 سلول بر میلی­لیتر به 104×480 سلول در میلی­لیتر رسید و تعداد گرانولوسیت­ها و پلاسماتوسیت­ها به ترتیب به 104×200 و 104×140 سلول در میلی­لیتر افزایش یافت. تزریق لاروها با کنیدی­های جدایه­های AM-118 و BB3 باعث افزایش تعداد گره در فواصل زمانی 24-12 ساعت پس از تزریق و افزایش فعالیت آنزیم فنل اکسیداز پس از 12-6 ساعت شد و از 12/0 به 2/0 U/mg protein رسید. جدایه AM-118 در مقایسه با BB3،زهرآگینی بیشتری نسبت به لاروها نشان داد و در مدت زمان کم­تر و غلظت کم­تر سبب مرگ­و­میر بیشتر شد. علاوه براین، پاسخ ایمنی لاروها نیز نسبت به این جدایه کم­تر از جدایه BB3 بود. نتایج حاضر نشان می­دهند که دو جدایه ایرانی قارچ بیمارگر B. bassiana روی لاروها زهرآگین هستند و سبب القای پاسخ­های ایمنی شده و نشان­گر درگیری فیزیولوژیک بین بیمارگر و میزبان می­باشند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Virulence and induction of immune responses by the two isolates of Beauveria bassiana against the larvae of Hyphantria cunea

نویسندگان [English]

  • Morteza Shahriari 1
  • Arash Zibaee 1
  • Malahat Mojarab Mahboubkar 1
  • Hassan Hoda 2
1 Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht. Iran.
2 Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension, Amol, Iran.
چکیده [English]

Abstract
Virulence of the two Iranian isolates of Beauveria bassiana was evaluated against the larvae of Hyphantria cunea through bioassay and immune responses. The median lethal concentrations (LC50) for AM-118 and BB3 isolates calculated as 8.8×105 and 2.3×106 spore/mL. by using dipping method. The LT50 values were calculated as 3.94 and 5.78 days, respectively for AM-118 and BB3 isolates. The highest numbers of the total hemocytes, granulocytes, and plasmatocytes were observed 3-6 hours post-injection of both fungal isolates. On the other hand, the total number of hemocytes increased from 160×104 to 480×104 cell/mL and the numbers of granulocytes and plasmatocytes increased to 200×104 and 140×104 cell/mL, respectively. The larvae injection by the conidia of AM-118 and BB3 led to the increase of nodule numbers at time intervals of 12-24 hours and the activity of phenoloxidase after 6-12 hours of post-injection from 0.12 to 0.2 U/mg protein. The isolate AM-118 showed the higher virulence compared to BB3 and it caused the more mortality in the lower time and spore concentrations. Moreover, the immune responses of the larvae toward this isolate were lower than BB3 isolate. The current results demonstrate that the two Iranian isolates of the entomopathogenic fungus, B. bassiana, are virulent against the larvae but they induce immune responses indicating physiological conflict between the pathogen and host.  
 

کلیدواژه‌ها [English]

  • Keyword: Cellular immunity
  • Entomopathogenic fungi
  • Fall webworm
  • ‎Pathogenicity
  • Virulence
References
 
Ajamhassani M, Jalali-Sendi J, Faresi M, Mehrabi A, 2011. Study of different isolates of Beauveria bassiana and Isaria farinosae on fourth instar larvae of Hyphantria cunea (Lep.: Arctiidae). Iranian Journal of Forest and Range Protection Research 9(1): 1–13 (In Persian with English abstract).
Ajamhassani M, Sendi JJ, Zibaee A, Askari H, Faresi MJ, 2013. Immunoliogical responses of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) to entomopathogenic fungi, Beauveria Bassiana (Bals. -Criy) and Isaria farinosae (Holmsk.) Fr. Journal of Plant Protection Research 53(2): 110–118.
Azambuja P, Garcia ES, Ratcliffe NA, 1991. Aspects of classification of Hemiptera hemocytes from six triatomine species. Memórias do Instituto Oswaldo Cruz 86: 1–10.
Bandani A 2005. Effects of Tolypocladium cylindrosporum and its secondary metabolites, efrapeptins, on the immune system of Galleria mellonella larvae. Biocontrol Science and Technology 15: 67–79.
Beckage NE, 2008. Insect Immunology. Academic press, 348 pp.
Binggeli O, Neyen C, Poidevin M, Lemaitre B, 2014. Prophenoloxidase activation is required for survival to microbial infections in Drosophila. PLoS Pathogen 10: e1004067.
Chouvenc T, Su NY, Robert A, 2009. Cellular encapsulation in the eastern subterranean termite, Reticulitermes flavipes (Isoptera), against infection by the entomopathogenic fungus Metarhizium anisopliae. Journal of Invertebrate Pathology 101: 234–241.
Dhar S, Jindal V, Jariyal M, Gupta VK, 2019. Molecular characterization of new isolates of the entomopathogenic fungus Beauveria bassiana and their efficacy against the tobacco caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control 29(1): 2–9.
Fan J, Xie Y, Xue J, Liu R. 2013. The effect of Beauveria brongniartii and its secondary metabolites on the detoxification enzymes of the pine caterpillar, Dendrolimus tabulaeformis. Journal of Insect Science 13:44.
Finney A, 1971. Probit analysis (3rd ed.). Cambridge: Cambridge University Press. 272 pp.
Gillespie JP, Burnett C, Charnley AK, 2000. The immune response of the desert locust Schistocerca gregaria during mycosis of the entomopathogenic fungus, Metarhizium anisopliae var acridum. Journal of Insect Physiology 46: 429–437.
Goettel MS, Eilenberg J, Glare T, 2012. Entomopathogenic fungi and their role in regulation of insect populations. In: Gilber LI, Gill SS (eds). Insect Control. Academic press. Pp. 387–431.
Gorman MJ, AC, Kanost MR, 2007. Characterization of tyrosine hydroxylase from Manduca sexta. Insect Biochemistry and Molecular Biology 37: 1327–1337.
Hajek AE, Eastburn CC, 2003. Attachment and germination of Entomophaga maimaiga conidia on host and non-host larval cuticle. Journal of Invertebrate Pathology 82: 12–22.
Kryukov VY, Kryukova NA, Tomilova OG, Vorontsova Y, Chertkova E, et al, 2020. Comparative analysis of the immune response of the wax moth Galleria mellonella after infection with the fungi Cordyceps militaris and Metarhizium robertsii. Microbial Pathogenesis 141: 103995.
Lacey LA, Frutos R, Kaya H, Vail P, 2001. Insect pathogens as biological control agents: do they have a future? Biological Control 21: 230–248.
Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS, 2015. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology 132: 1–41.
Lavine MD, Strand MR, 2002. Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology 32: 1295–1309.
Leonard C, Kenneth S, Ratcliffe NA, 1985. Studies on prophenoloxidase and protease activity of Blaberua craniifer haemocytes. Insect Biochemistry 15: 803–810.
Liu QN, Zhu BJ, Wang L, Wei GQ, Dai LS, et al, 2013. Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization. Journal of Invertebrate Pathology 114: 313–323.
Lopes RB, Laumann RA, Blassioli-Moraes MC, Borges M, Faria M, 2015. The fungistatic and fungicidal effects of volatiles from metathoracic glands of soybean-attacking stink bugs (Heteroptera: pentatomidae) on the entomopathogen Beauveria bassiana. Journal of Invertebrate Pathology 132: 77–85.
Mak P, Zdybicka-Barabas A, Cytryńska M, 2010. A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi. Developmental Comparative Immunology 34: 1129–1136.
Maniania NK, Ekesi S, Löhr B, Mwangi F, 2003. Prospects for biological control of the western flower thrips, Frankliniella occidentalis, with the entomopathogenic fungus, Metarhizium anisopliae, on chrysanthemum. Mycopathologia 155(4): 229–235.
Maqsoudi P, Ramzi S, Zibaee A, Khodaparast SA, 2019. Virulence comparison of two Iranian isolates of Beauveria bassiana Vuillemin against Pseudococcus viburni Signoret (Hemiptera: Pseudococcidae). Trends in Entomology 14: 63–70.
Mikami OK, Takamatsu M, Yarita R, 2020. Repurposing a traditional Japanese method of pest control for wintering pine moths, Komo-trap, for use against summer and winter populations of fall webworms. Peer Journal 8: 1–13.
Mirhaghparast SK, Zibaee A, Hajizadeh J, 2013. Effects of Beauveria bassiana and Metarhizium anisopliae on cellular immunity and intermediary metabolism of Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae). Invertebrate Survival Journal 10: 110–119.
Nakonechna YO, Stankevych SV, Zabrodina IV, Lezhenina, IP, Filatov, MO, et al, 2019. Distribution area of Hyphantria cunea Drury: the analysis of Ukrainian and world data. Ukrainian Journal of Ecology 9(3): 214–220.
Ramzi S, Zibaee A, 2014. Biochemical properties of different entomopathogenic fungi and their virulence against Chilo suppressalis (Lepidoptera: Crambidae) larvae. Biocontrol Science and Technology 24: 597–610.
Rezaei V, Jaafari Y, Moharramipour S, Talebi AA, 2004. Biological study of American white webworm Hyphantria cunea Drury (Lep.: Arctiidae) in Guilan province. Proceeding of the 16th Iranian Plant Protection Congress Vol. 1, Pests, 336.
Senthil-Nathan S, 2013. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Frontiers in Physiology 4: 1e17.
Tomilova OG, Kryukov VY, Duisembekov BA, Yaroslavtseva ON, Tyurin MV, et al, 2016. Immune-physiological aspects of synergy between avermectins and the entomopathogenic fungus Metarhizium robertsii in Colorado potato beetle larvae. Journal of Invertebrate Pathology 140: 8–15.
Tsakas S, Marmaras VJ, 2010. Insect immunity and its signaling: an overview. Invertebrate Survival Journal 7: 228–238.
Yaroslavtseva ON, Dubovskiy IM, Khodyrev VP, Duisembekov BA, Kryukov VY, et al., 2017. Immunological mechanisms of synergy between fungus Metarhizium robertsii and bacteria Bacillus thuringiensis ssp. morrisoni on Colorado potato beetle larvae. Journal of Insect Physiology 96: 14–20.
Yassine H, Kamareddine L, Osta MA, 2012. The mosquito melanization response is implicated in defense against the entomopathogenic fungus Beauveria bassiana. PLoS Pathogen 8: e1003029.
Zdybicka-Barabas A, Mak P, Jakubowicz T, Cytryńska M, 2014. Lysozyme and defense peptides as suppressors of phenoloxidase activity in Galleria mellonella. Archive of Insect Biochemistry and Physiology 87: 1–12.
Zibaee A, Malagoli D, 2014. Immune response of Chilo suppressalis Walker (Lepidoptera: Crambidae) larvae to different entomopathogenic fungi. Bulletin of Entomological Research 104(2): 155–163.