اثر سطوح مختلف کود نیتروژن روی واکنش تابعی پشه شکارگر Aphidoletes aphidimyza در تغذیه از شته جالیز Aphis gossypii

نوع مقاله : مقاله پژوهشی


1 دانش آموخته کارشناسی ارشد گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 استاد گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

3 دانش آموخته مقطع دکتری، گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

4 دانشجوی مقطع دکتری، گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.


واکنش تابعی یکی از اجزای مهم در روابط شکارگر- شکار می­باشد. این واکنش رفتاری می­تواند تحت تأثیر عوامل مختلف مانند کیفیت گیاهان میزبان قرار گیرد. در این پژوهش، واکنش تابعی لاروهای پشه  شکارگر Aphidoletes aphidimyza نسبت به شته جالیز پرورش یافته روی گیاهان خیار تغذیه شده با مقادیر مختلف نیتروژن (صفر، 100، 150 و 200 کیلوگرم در هکتار) بررسی شد. آزمایش­ در دمای 1 ± 25 درجه­ سلسیوس، رطوبت نسبی 5 ± 60 درصد و دوره­ نوری  8 :16 (تاریکی: روشنایی) ساعت انجام شد. تراکم­های مختلفی (دو، چهار، شش، هشت، 12، 16و 24) از پوره­های دو و سه روزه­ی شته­ جالیز به صورت جداگانه در هفت تکرار در اختیار لاروهای چهار روزه­ پشه­ شکارگر قرار گرفت. تعداد طعمه­های خورده شده بعد از 18 ساعت شمارش و ثبت شد. تعیین نوع واکنش تابعی و تخمین پارامتر‏های آن به ترتیب با استفاده از رگرسیون لجستیک و رگرسیون غیرخطی در نرم افزار SAS انجام شد. واکنش تابعی شکارگر در تمام تیمارها از نوع دوم بود. نرخ حمله­ شکارگر در تیمارهای مختلف بین 0623/0 تا 1512/0 بر ساعت و زمان دستیابی آن بین 4646/1 تا 8716/1 ساعت متغیر بود. بیش­ترین مقدار عددی نرخ حمله و کمترین مقدار عددی زمان دستیابی شکارگر در تیمار 200 کیلوگرم نیتروژن در هکتار به دست آمد. این پژوهش نشان داد که افزودن کود نیتروژن به خاک در کشت خیار می­تواند توانایی­ شکارگری پشه A. aphidimyza را روی شته جالیز بهبود بخشد. با این حال، درک جزئیات بیشتر از اثرات سطوح مختلف کود نیتروژن در برهم­کنش­های گیاه خیار- شته جالیز- پشه شکارگر نیازمند انجام مطالعات بیشتری است.


عنوان مقاله [English]

Effect of different nitrogen fertilizer levels on the functional response of the predatory gall midge Aphidoletes aphidimyza in feeding on the melon aphid Aphis gossypii

نویسندگان [English]

  • Parvin Honarvar 1
  • Mahdi Hassanpour 2
  • Ali Golizadeh 2
  • Leila Mottaghinia 3
  • Leila Zanganeh 4
1 Graduated MSc, Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
2 Professor Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
3 Graduated PhD Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
4 PhD Student, Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

The functional response is one of the important components of predator-prey interactions. It can be affected by different factors such as host plant quality. In this research, the functional response of the predatory gall midge Aphidoletes aphidimyza larvae to the nymphs of the melon aphid, Aphis gossypii reared on cucumber plants amended with different levels of nitrogen fertilizer (0, 100, 150 and 200 kg/ha) was investigated. The experiments were carried out at 25±1 °C, 60±5 % RH and a photoperiod of 16: 8(L: D). Different densities (2, 4, 6, 8, 12, 16 and 24) of mixed 2- and 3-d old nymphs of the aphid were separately offered to 4-d-old predator larvae. The numbers of killed preys were recorded after 18 h. Logistic and nonlinear regression analyses were used to determine the type of functional response and estimate of attack rate (a) and handling time (Th) parameters, respectively. At all treatments, the predator exhibited a type II functional response to change in A. gossypii density. The attack rate and handling time of the predator were ranged from 0.0623 to 0.1512 h-1 and 1.4646 to 1.8716 h, respectively. The highest value of attack rate and the lowest value of the handling time of A. aphidimyza were obtained at treatment of 200 kg/ha nitrogen. This study revealed that adding nitrogen to the soil in cucumber cultivation can improve the predatory ability of A. aphidimyza on A. gossypii. However, for understanding further details of the effects of different levels of nitrogen fertilizer on cucumber- A. gossypii- A. aphidimyza interactions, further studies need to be carried out.

کلیدواژه‌ها [English]

  • Keywords: attack rate
  • handling time
  • nitrogen fertilizer
  • predator-prey interactions
  • prey quality
Adams RG, Prokopy RJ, 1980. Aphidoletes aphidimyza Rondani (Dip.: Cecidomyiidae): An effective predator of the apple aphid (Hom.: Aphididae) in Massachusetts. Journal of Professional Ecology 2(1): 27–39.
Aqueel MA, Leather SR, 2011. Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars. Journal of Crop Protection 30(2): 216–221.
Aqueel MA, Leather SR, 2012. Nitrogen fertilizer affects the functional response and prey consumption of Harmonia axyridis (Coleoptera: Coccinellidae) feeding on cereal aphids. Journal of Annals of Applied Biology 160(1): 6–15.
Badii MH, McMurtry GA, Flores AE, 1999. Rates of development, survival and predation of immature stages of Phytoseiulus longipes (Acari: phytoseiidae). Journal of Experimental and Applied Acarology 23: 611–621.
Blackman RL, Eastop VF, 2000. Aphids on the World’s Crops: An Identification and Information Guide. 2nd edition, Wiley, London, UK. 476 pp.
De Clercq P, Mohaghegh J, Tirry L, 2000. Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Journal of Biological Control 18(1): 65–70.

Fallahpour F, Ghorbani R, Nassiri Mahallati M, Hosseini M, 2015. Interaction of different nitrogen fertilization regimes of canola with mustard aphid (Lipaphis erysimi Kalt.) and the predatory gall midge (Aphidoletes aphidimyza Rondani). Biological Control of Pests and Plant Diseases. 4(1): 1–12 (in Persian with English abstract).

Fernández-Arhex V, Corley JC, 2003. The functional response of parasitoids and its implications for biological control. Journal of Biocontrol Science and Technology 13(4): 403–413.
Gagné RJ, 1971. The genus Aphidoletes Kieffer (Diptera: Cecidomyiidae) in North America. Entomological News 82: 177–181.
Hassell MP, 1978. The Dynamics of Arthropod Predator-Prey Systems. Princeton University Press. 237 pp.
Hassell MP, 1982.What is searching efficiency? Annals Applied Biology 101: 170–175.
Helyer N, Cattlin ND, Brown KC, 2014. Biological Control in Plant Protection: A Color Handbook. 2nd edition, CRC Press Inc, UK. 276 Pp.
Holling CS, 1961. Principles of insect predation. Journal of Annual Review of Entomology 6: 163–182.
Hosseini A, Hosseini M, Goldani M, Karimi J, Madadi H, 2015. Effect of nitrogen fertilizer on biological parameters of the Aphis craccivora (Hemiptera: Aphidiae) and associated productivity losses in common globe Amaranth. Journal of Agricultural Science and Technology 17(6): 1517–1528.
Hosseini A, Hosseini M, Michaud JP, Modarres Awal M, Ghadamyari H, 2018. Nitrogen fertilization increases the nutritional quality of Aphis gossypii (Hemiptera: Aphididae) as prey for Hippodamia variegata (Coleoptera: Coccinellidae) and alters predator foraging behavior. Journal of Economic Entomology 111(5): 2059–2068.
Hosseini M, Ashouri A, Enkegaard A, Goldansaz SH, Nassiri Mahalati M, et al., 2010. Performance and population growth rate of the cotton aphid, and associated yield losses in cucumber, under different nitrogen fertilization regimes. International Journal of Pest Management 56(2): 127–135.
Jalalipour R, Sahragard A, Karimi Malati A, 2014. Effect  of  different  foraging  periods  on  the  functional  response  of Aphidoletes  aphidimyza  (Diptera:  Cecidomyiidae)  at  different densities of Aphis craccivora. Journal of Crop Protection 3(2): 283–293.
Juliano SA, 2001. Non-linear curve fitting: Predation and functional response curves. In: Scheiner SM, Gurevitch J (eds.). Design and Analysis of Ecological Experiments. Chapman and Hall, New York. Pp. 178–196.
Kagata H, Nakamura M, Ohgushi T, 2005. Bottom-up cascade in a tri-trophic system: different impacts of host-plant regeneration on performance of a willow leaf beetle and its natural enemy. Journal of Ecological Entomology 30: 58–62.
Koocheki A, Nassiri Mahallati M, Bakhshaei S, Davari A, 2017. A meta analysis on nitrogen fertilizer experiments on cereal crops in Iran. Journal of Agronomy 9(2): 296–313 (In Persian with English summary).
Labbafi, Y. 1995. Biology of the predatory midge, Aphidoletes aphidimyza Rondani (Dip.; Cecidomyiidae) and methods for its rearing in laboratory. MSc Thesis. Department of Plant Protection, University of Tehran, Karaj, Iran. (In Persian with English summary).
Li Q, Mao H, Zuo Z, Zhang X, Ni J, et al.,  2017. Effects of nitrogen and phosphorus on the microstructure and ultrastructure of tomato leaves (Solanum lycopersicum). Journal of Plant Nutrition 40(12):1773–1783.
Lucas E, Brodeur J, 2001. A fox in sheep’s clothing: Furtive predators benefit from the communal defense of their prey. Journal of Ecology 82: 3246–3250.
Madahi Kh, Sahragard A, Hossieni R, 2013. Larval age-specific searching efficiency of Aphidoletes aphidimyza (Dip.: Cecidomyiidae) preying on different densities of Aphis craccivora (Hem.: Aphididae). Journal of Entomological Society of Iran 33(2): 33–43.
Malakouti MJ, 2005. Sustainable Agriculture and Yield Increase through Balance Fertilization. Sana Publication. 470 pp. (in Persian).
Meadow RH, Kelly WC, Shelton AM, 1985. Evaluation of Aphidoletes aphidimyza (Dip.: Cecidomyiidae) for control of Myzus persicae (Hom.: Aphididae) in greenhouse and field experiments in the United States. Journal of Entomophaga 30: 385–392.
Montoya P, Liedo P, Benery B, Barrere JF, Cancino J, et al., 2000. Functional response and superparasitism by Diachasmimoopha longicaudata (Hymenoptera: Braconidae), a parasitoid of fruit flies (Diptera: Tephritidae). Journal of Annals of the Entomological Society of America 93(1): 47–54.
Mottaghinia L, Hassanpour M, Razmjou J, Hosseini M, Chamani E, 2016. Functional response of Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae) to Aphis gossypii Glover (Hemiptera: Aphididae): Effects of vermicompost and host plant cultivar. Journal ofNeotropical Entomology 45(1):88–95.
Nevo E, Coll M, 2001. Effect of nitrogen fertilization on Aphis gossypii (Homoptera: Aphididae): variation in size, color, and reproduction. Journal of Economic Entomology 94: 27–32.
Orlando A, Camauba TS, Suplicy FN, 1970. Tests on the control of yellow beetle Coccinella vulgate with new pesticides. Biology 36: 76–82.
Pervez A, Omkar, 2005. Functional responses of coccinellid predators: an illustration of a logistic approach. Journal of Insect Science 5(1): 1–6.
Poole RW, 1974. An Introduction to Quantitative Ecology. McGraw-Hill, New York. 532 pp.
Rogers DJ, 1972. Random search and insect population models. Journal of Animal Ecology 41: 369–383.
Ruzicka Z, Havelka J, 1998. Effects of oviposition-deterring pheromone and allomones on Aphidoletes aphidimyza (Diptera: Cecidomyiidae). European Journal of Entomology 95: 211–216.
Sarmento RA, Pallini A, Venzon M, De Souza O, Molina Rugama AJ, et al., 2007. Functional response of the predator Eriopis connexa (Coleoptera: Coccinellidae) to different prey types. International Journal of Brazilian Archives of Biology and Technology 50(1): 121–126.
SAS Institute, 2002. SAS/STAT User's Guide. SAS Institute Inc, Cary, NC. Inc.
Solarska E, 2004. The use of Aphidius colemani and Aphidoletes aphidimyza to control damson-hop aphid (Phorodon humuli Schrank) on hop. Journal of Plant Protection Research 44: 85–90.
Solomon ME, 1949. The natural control of animal populations. Journal of Animal Ecology 18: 1–35.
Trexler JC, Travis J, 1993. Nontraditional regression analysis. Journal of Ecology 74(6): 1629–1637.
van Lenteren JC, Bakker K, 1976. Functional responses in invertebrates. Netherlands Journal of Zoology 26(4): 567–572.
Waage JK, Greathead DJ, 1988. Biological control–challenges and opportunities. Journal of Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 318: 111–128.
Yukawa J, Yamaguchi D, Mizota K, Setokuchi O, 1998. Distribution and host range of an aphidophagous species of Cecidomyiidae, Aphidoletes aphidimyza (Diptera), in Japan. Journal ofApplied Entomology and Zoology 33: 185–193.
Zamani AA, Talebi AA, Fathipour Y, Baniameri V, 2006. Effect of temperature on biology and population growth parameters of Aphis gossypii Glover (Hom., Aphididae) on greenhouse cucumber. Journal of Applied Entomology 130: 453–460.

Zarghami S, Allahyari H, Saboori A, Mirmohamadi Sh, Alasvand-Zarasvand A, 2009. The effect of nitrogen fertilization on development and intrinsic rate of increase of Brevicoryne brassicae L. (Hom: Aphididae). Plant Protection. 32 (1): 23–32 (in Persian with English abstract).

Zhao D, Reddya K, Kakania RVG, Reddy VR, 2005. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy 22: 391–403.