ارزیابی دو گونه ی بومی Trichoderma harzianum و Trichoderma atroviride علیه قارچ Plenodomus lingam عامل ساق سیاه کلزا در شرایط گلخانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه‌ی آموزش عالی غیر انتفاعی بهاران گرگان.

2 گروه تولیدات گیاهی، دانشکده‏ی کشاورزی و منابع طبیعی، دانشگاه گنبدکاووس

3 گروه گیاهپزشکی، دانشکده‏ ی تولید گیاهی دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

4 دانش‎آموخته ی دکتری گروه گیاهپزشکی، دانشکده‏ ی تولید گیاهی دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

چکیده

چکیده
در این تحقیق تاثیر قارچ­های Trichoderma harzianum و T. atrovirideعلیه P. lingamدر شرایط آزمایشگاه و گلخانه بررسی شد. سنجش آزمایشگاهی به صورت آزمون‌های کشت متقابل و تولید ترکیبات فرار انجام گردید. برای سنجش گلخانه‎ای‌ نیز از دو روش تیمار بذر با آنتاگونیست و مایه‎زنی اندام هوایی گیاهچه‎های کلزا با سوسپانسون اسپوری عوامل آنتاگونیست استفاده شد. آزمایش در قالب دو طرح‎ کاملا تصادفی جداگانه با چهار تکرار انجام شد. درصد مرگ‎و‎میر گیاهچه‎ها و شدت آلودگی حاصل تعیین گردید. نتایج نشان داد که هر دو گونه قارچ، توان آنتاگونیستی بالایی در برابر بیمارگر دارا بودند. در آزمون کشت متقابل، جدایه‎ها اثر آنتاگونیستی بالایی بر رشد میسلیوم P. lingam نشان دادند. دو جدایه‎ی T. harzianum و    T. atrovirideرشد قارچ را به ترتیب 6/58 و 4/71 درصد مهار کردند. درصد بازدارندگی از رشد دو جدایه، در آزمون ترکیبات فرار 120 و 240 ساعت پس از کشت، به ترتیب 21-15 و 39-31 درصد تعیین شد. در آزمون گلخانه‎ای هر دو گونه به طور معنی‎داری (01/0P<) شدت بیماری را نسبت به شاهد کاهش دادند. نتایج آزمایش‎های گلخانه‎ای نشان داد که در روش تیمار بذر، جدایه‏های آنتاگونیست به ترتیب 5/42 و 47 درصد بیماری را کاهش دادند. در تیمار اندام‏های هوایی با جدایه‎های T. harzianum و T. atroviride، شدت بیماری به ترتیب 13/63 و 79/78 درصد کاهش یافت. بنابراین هر دو گونه پتانسیل قابل توجهی برای مهار زیستی بیماری ساق سیاه کلزا دارند ولی در مجموع گونه T. atrovirideموثرتر از گونه دیگر بر علیه این بیمارگر عمل کرد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Two Native Isolates of Trichoderma harzianum and Trichoderma atroviride against Plenodomus lingam, the Causal Evaluation of Two Native Isolates of Trichoderma harzianum and Trichoderma atroviride against Plenodomus lingam, the Causal Agent of Rapeseed Blackleg

نویسندگان [English]

  • Rahimeh Akbari 1
  • Fakhtak Taliei 2
  • Kamran Rahnima 3
  • Zahra Vakili 4
1 Baharan Higher Educational Institute, Gorgan.
2 Department of Plant Production, Gonbad Kavoos University.
3 Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources.
4 Ph.D. Student, Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources.
چکیده [English]

Abstract
In this research, the effect of Trichoderma harzianum and T. atroviride against P. lingam was investigated in the laboratory and greenhouse conditions. Laboratory tests were followed as dual cultures and testing of the fungal volatile compounds. In the greenhouse, the antagonistic effects of the isolates were tested through treating rapeseed seeds and rapeseed above-ground parts with the spore suspension of the isolates in 106 spore per ml. The experiments were conducted in complete randomized design with four replications. Percent of plant mortality and disease severity were assessed. Both isolates showed antagonistic activities against the fungal phytopathogen. The two isolates T. harzianum and T. atroviride could inhibit the growth of the pathogen by 58.6 and 71.4 respectively in dual culture. In volatile compound phase, percent of growth inhibition were 15-21% and 31-39% in 120 and 240 hours after culture. In greenhouse experiments, antagonistic species could significantly (P<0.01) reduce disease severity compared to control. The greenhouse results revealed that in the seed treatment experiment, Trichoderma isolates decreased the rapeseed blackleg to 42.5 and 47.5℅, respectively after two weeks. Treating the above-ground parts with isolates T. harzianum and T. atroviride were significantly decreased the disease rate to 63.13 and 78.79℅, respectively. So both Trichoderma species can biologically inhibit canola black leg, but T. atroviride was for the first time more effective than another one.
 
 

کلیدواژه‌ها [English]

  • Keywords: Antagonists؛ Canola؛ Plenodomuslingam؛ Trichoderma harzianum
  • Trichoderma atroviride
Afshari Azad H, Dalili SR, Salati M, and Amini Khalaf MA, 2008. Distribution of canola blackleg disease in Iran. Proc. 18th Iranian. Plant Protection Congress, Hamedan, Iran. 199(Abst.).
Ahluwalia V, Waliaa S, Satib P, Kumara J, Kundua A, Shankara J., and Paulc Y.S. 2014. Isolation, characterisation of major secondary metabolites of the Himalayan Trichoderma koningii and their antifungal activity. Archives of Phytopathology and Plant Protection 47(9): 1063–1071.
Alabouvette C, Brunin B , and Louvet J 1974. Studies on rape disease caused by Leptosphaeria maculans. Pycnidiospore infectivity and varietal susceptibility. Ann. Phytopathology 6: 265-280.
Alizadeh H, and Salari KH. 2012. Induction of Systemic Resistance (ISR) against Fusarium oxysporum f. sp. radicis cucumerinum on Cucumber by Isolates of Trichoderma and Fluorescent Pseudomonads from Cucumber Rhizosphere. Applied Research in Plant Protection 5(2):215-225.
Arianpour A, Sadravi M, and Taghavi SM. 2015. Biological Control of Wheat Take-all Disease with Native Isolates of Pseudomonas fluorescens and Trichoderma harzianum from Fars Province. Applied Research in Plant Protection 5(1):159-168.
Ballinger DJ, Salisbury PA, Dennis JI, Kollmorgen JF and Potter TD, 1988. Evaluation of fungicides, applied at sowing, for control of blackleg in rapeseed. Australian Journal of Experimental Agriculture 28, 511–515.
Blaszczyk L, Siwulski M, Sobieralski K, Lisiecka J and Jedryczka M. 2014 Trichoderma spp. Application and prospects for use in organic farming and industry. Journal of Plant Protection Research 54:309–317
Bolar JP, Norelli JJ, Wong KW, Hayes CK, Harman EE and Aldwinckle HS, 2000. Expression of endochitinas from Trichoderma hrzianum in transgenic apple scab and reduced vigor. Phytopathology 90:72-77.
Burgess DR, and Hepworth G. 1996. Biocontrol of Sclerotinia stem rot (Sclerotinia minor) in sunflower by seed treatment with Gliocladium virense. Plant Pathology, 45: 58.
Chernin L, and Chet I. 2002. Microbial enzymes in biocontrol of plant pathogens and pests. In: Burns R, Dick R (eds.) Enzymes in the environment: activity, ecology, and applications. Marcel Dekker Inc., New York, pp 171–225.
Dawidziuk A, Popiel D, Kaczmarek J, Strakowska J and Jedryczka M. 2016. Optimal Trichoderma strains for control of stem canker of brassicas: molecular basis of biocontrol properties and azole resistance. BioControl 61:755–768.
Delourme R, Chevre AM, Brun H, Rouxel T, Balesdent MH, Dias JS, Salisbury P, Renard M, and Rimmer S.R. 2006. Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). European Journal of Plant Pathology 114, 41-52.
Dennis C., and Webster J. 1971. Antagonistic properties of species groups of Trichoderma. Production of volatile antibiotics. Transactions of British Mycological Society 57: 25-29.
Etebarian HR. 2006. Evaluation of Trichoderma isolates for biological control of charcoal stem rot in melon caused by Macrophomina phaseolina. Journal of Agricultural Science and Technology 8:243-250.
Habibi R, Rahnama K, and Taghi nasab M. 2015. Evaluating the effectiveness of Native Trichoderma Species in Production of Extracellular Enzymes during Interaction with Plant Pathogenic Fungus Fusarium oxysporum. Applied Research in Plant Protection. 4(2):73-85.
Hajiegharari B, Torabi-giglou M, Mohammadi MR, and Davari M. 2008. Biological potantial of some Iranian Trichoderma isolates in the control of soil borne plant pathogenic fungi. African Journal of Biotechnology, 7: 967- 972.
Hjeljord L and Tronsmo A. 1998. Trichoderma and Gliocladium in biological control: an overview. In: Harman GE, Kubicek CP (eds.) Trichoderma and Gliocladium enzymes, biological control and commercial applications. Taylor and Francis Ltd, London, Great Britain, pp 131–151.
Huang YJ, Pirie EJ, Evans N, Delourme R, King GJ, and Fitt BDL. 2009. Quantitative resistance to symptomless growth of Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape). Plant Pathology 58, 314-323.
Hysek J, Vach M, Brozova J, Sychrova E, Civinova M, Nedelnik J, and Hruby J. 2002. The influence of the application of mineral fertilizers with the biopreparation supresivit (Trichoderma harzianum) on the health and the yield of different crops. Archiv. Phytopathology Pflanzenschutz 35: 115-124.
Kaczmarek J, Brachaczek J and Jedryczka M. 2014. The effect of fungicide spray time on the incidence of stem canker of brassicas and seed yield of winter oilseed rape in Pomerania. Journal of Plant Disease Protection 121:58–63.
Karbanda PD, and Dahiya JS. 1990. A metabolite of Penicillium verrucosum inhibitory to growth of Leptosphaeria maculans and Rhizoctonia solani. Canadian Journal of Plant Pathology 12, 335-338.
Khan MO and Shahzad S. 2007. Screening of Trichoderma species for tolerance to fungicides. Pakistan Journal of Botany 39:945–951.
Khodaei M, and Hemmati R. 2016. Investigation of Trichoderma isolates efficiency in biological control of Rhizoctonia root rot of bean in Zanjan. Journal of Plant Protection 29(4): 471-480.
Kowalska J and Remlein-Starosta D. 2011. Research of nonchemical methods of winter oilseed rape protection in Poland. Journal Research Applied Agricultural Engineering 56:220–223.
Marcroft SJ, Van de Wouw AP, Salisbury PA, Potter TD and Howlett, BJ. 2012. Rotation of canola (Brassica napus) cultivars with different complements of blackleg resistance genes decreases disease severity. Plant Pathology 61(5):934-944.
McNabb W, Van Den Berg CGJ, and Rimmer SR. 1993. Comparison of inoculation methods for selection of plants resistant to Leptosphaeria maculans in Brassica napus. Canadian Journal of Plant Science 73: 1199-1207.
Mokhtar H, and Dehimat L. 2015. In vitro and In vivo Efficiency of Trichoderma harzianum against Phoma and Glocladium Soft Rot Occurred on Tomato Fruits (Lycopersicon esculentum). International Journal of Current Microbiology and Applied Sciences 4(8): 141-147.
Narmani A, Arzanlou M, and Babei Ahari A. 2017. Antagonistic Effect of Endophytic and Commercial Trichoderma Isolates on Phaeoacremonium minimum, the Causal Agent of Leaf Stripe Disease of Grapevine. Applied Research in Plant Protection 7(1):151-169.
Panjehkeh N, Saberyan A, Afshari Azad H,and Salari M. 2011. Biological control of Phoma lingam, the causal agent of rapeseed blackleg by Trichoderma and Bacillus subtilis isolates. Iranian Journal Plant Pathology 47(1): 3-5.
Popiel D, Kwasna H, Chelkowski J, Stepien L, and Laskowska M. 2008. Impact of selected antagonistic fungi on Fusarium species—toxigenic cereal pathogens. Acta Mycologica 43:29–40.
Shahiri Tabarestani M, Rahnama K, Jahanshahi M, Nasrollahnejad S and Fatemi MH. 2017. Extraction and determination of Trichoderma atroviridae (6022) secondary metabolites and their antifungal effects. Journal of Plant Protection 31(1):131-141.
Singh A, Srivastava S, and Singh HB. 2007. Effect of substrates on growth and shelf life of Trichoderma harzianum and its use in biocontrol of diseases. Bioresource Technology 68: 470-473.
Taliei F, Safaie N, and Aghajani MA. 2012. Survival of Macrophomina phaseolina and Associated Mycobiota on Soybean Residuals and the Effect of Trichoderma harzianum on Their Population Dynamics. Applied Research in Plant Protection. 1(1):1-13.
Vakili Z, Rahnama K, Nasrollahnezhad S, and Yamchi A. 2016. First report of pathogenicity group 3 and 4 Leptosphaeria maculans, the causal agent of blackleg disease of oilseed rape in Northern Iran. Iranian Journal Plant Pathology 52(4): 551-554.
Vasebi Y, Alizadeh A, and Safaie N. 2012. Biological Control of Soybean Charcoal Rot Caused by Macrophomina Phaseolina Using Trichoderma harzianum. Agricultural science and sustainable production 22 (1):41-54.
Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M and Sivasithamparam K, 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology 43: 143-8.
Wachowska U, Irzykowski W, Jedryczka M, Stasiulewicz- Paluch AD and Glowacka K. 2013. Biological control of winter wheat pathogens with the use of antagonistic Sphingomonas bacteria under greenhouse conditions. Biocontrol Science and Technology 23:1100–1122.
West JS, Kharbanda PD, Barbetti MJ, and Fitt BDL. 2001. Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathology 50:10–27
Williams PH, and Fitt BDL. 1999. Differentiating A and B groups of Leptosphaeria maculans, causal agent of stem canker (blackleg) of oilseed rape. Plant Pathology 48: 161-175.
Zaman Mirabadi A, Rahnama K, Sadravi M, and Salati M. 2010. Identification, distribution and symptomology of the causal agents of rapeseed blackleg (Leptosphaeria maculans and Leptosphaeria biglobosa) in Mazandaran and Golestan provinces and determination of three common rapeseed cultivars susceptibility reaction. Iran. Journal of Plant Pathology 45(4): 75-78
Zhang X., White R.P., Demir E, Jedryczka M, Lange RM, Islam M, Li ZQ., Huang Y.J., Hall A. M., Zhou G., Wang Z., Cai X., Skelsey P. and Fitt B.D.L. 2014. Leptosphaeria spp., phoma stem canker and potential spread of L. maculans on oilseed rape crops in China. Plant Pathology 63:598-612.