اثر سم Bacillus thuringiensis Berliner روی برخی ویژگی‌های زیستی زنبور پارازیتوئید Habrobracon hebetor (Say) (Hymenoptera: Braconidae)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد گروه حشره شناسی، دانشگاه آزاد اسلامی واحد شیراز، شیراز.

2 استادیار گروه حشره شناسی، دانشگاه آزاد اسلامی واحد شیراز، شیراز.

3 استادیار بخش تحقیقات گیاه پزشکی، مرکز تحقیقات کشاورزی و منابع طبیعی هرمزگان، بندرعباس.

چکیده

چکیده
به منظور بررسی طول عمر، ترجیح میزبانی، طول دوره­ی مراحل زیستی و تعداد نتاج تولیدی زنبور Habrobracon hebetor روی لارو میزبان Ephestia kuehniella تیمار شده با دزهای کشنده و زیر کشنده باکتری Bt آزمایشی در قالب طرح کاملا تصادفی در شرایط آزمایشگاه اجرا شد. نتایج نشان داد تعداد تخم زنبور از 9/3 عدد در تیمار شاهد به 4/1 و 7/2 عدد به ترتیب در دزهای کشنده و زیر کشنده کاهش یافت. با کاهش تعداد نتاج زنبور از 7/3 عدد در تیمار شاهد به 6/0 و 1/2 عدد به ترتیب در دزهای کشنده و زیر کشنده، طول عمر زنبور نیز از 6/15 روز در تیمار شاهد به 3/12 و 7/13 روز به ترتیب در دزهای کشنده و زیرکشنده کاهش یافت. در تیمار دز کشنده Bt، طول مراحل جنینی و لاروی افزایش معنی‌داری نشان داد، اما طول دوره های شفیرگی در هر دو دز کشنده و زیر کشنده Bt نسبت به تیمار شاهد کاهش یافت. نتایج نشان داد با کاهش دز مصرفی Bt و اجتناب از کاربرد آن در مراحل حساس زندگی زنبور پارازیتوئید، می‌توان کارایی استفاده از آنها را در کنترل تلفیقی آفات ارتقاء داد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Bacillus thuringiensis Berliner on Some Biological Characteristics of Parasitoid Habrobracon hebetor (Say) (Hymenoptera: Braconiadae)

نویسندگان [English]

  • Maryam Famil 1
  • Shahram Hesami 2
  • Majid Askari 3
1 MSc. Student Department of Entomology, Islamic Azad University, Shiraz Branch, Shiraz, Iran.
2 Assistant Professor, Department of Entomology, Islamic Azad University, Shiraz Branch, Shiraz, Iran.
3 Assistant Professor, Department of Plant Protection Research, Hormozgan Agricultural and Natural Resources Research Center, Bandarabbas, Iran.
چکیده [English]

Abstract
Longevity, host preference, length of life stages and the number of offspring of Habrobracon hebetor were evaluated on the host larvae of Ephestia kuehniella treated with lethal and sub-lethal doses of Bacillus thuringiensis Experiments were conducted in a completely randomized design  under laboratory condition. The number of eggs decreased from 3.9 in control to 1.4 and 2.7 in lethal and sub-lethal doses, respectively. By reducing the number of parasitoid offspring from 3.7 in control to 0.6 and 1.2 in lethal and sub-lethal doses, also the adult parasitoid longevity decreased from 15.6 days in control to 12.3 and 13.7 days in lethal and sub-lethal doses, respectively. In the lethal dose of Bt treatment, duration of embryonic and larval stages of the wasp showed a significant increase compared to control, but pupal stage duration decreased in both lethal and sub-lethal doses of Bt treatment. Generally, by reducing the usage dose of Bt and avoiding its application during the critical stages of parasitoid life, the efficiency of their use in integrated pest management can be improved.

کلیدواژه‌ها [English]

  • Keyword: Bt
  • Lethal dose
  • Sub-lethal dose
عبدی بسطامی ف، فتحی‌پور ی و طالبی ع، 1389. مقایسه پارامترهای جدول زیستی سه جمعیت مختلف زنبور پارازیتوئید Habrobracon hebetor (Hym.: Braconidae) روی Ephestia kuehniella (Lep: Pyralidae) در شرایط آزمایشگاه. آفات و بیماری‌های گیاهی. جلد دوم، شماره 78. صفحه‌های 153 تا 176.
عطاران م، 1374 . اثر میزبان‌های آزمایشگاهی بر روی خصوصیات زیستی زنبور پارازیتویید Habrobracon hebetor. پایان نامه‌ی کارشناسی ارشد حشره‌شناسی کشاورزی، دانشکده‌ی کشاورزی، دانشگاه تربیت مدرس.
Amir-Maafi M and Chi H, 2006. Demography of Habrobracon hebetor (Hym.: Braconidae) on two pyralid hosts (Lep.: Pyralidae). Annals of the Entomological Society of America 99: 84-90.
Bailey A, Chandler D, Grant WP, Greaves J, Gillian P and Tatchell M, 2010. Biopesticides, Pest Management and Regulation. CAB International Publishing.
Baur ME and Boethel DJ, 2003. Effect of Bt-cotton expressing Cry1A (c) on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. Biological Control 26: 325-332.
Bernal JS, Griset JG and Gillogly PO, 2002. Impacts of Developing on Bt Maize-Intoxicated Hosts on. Journal of Entomology Science 37: 27-40.
Blumberg D, Navon A, Keren S, Goldenberg S and Ferkovich SM, 1997. Interactions among Helicoverpa armigera (Lepidoptera: Noctuidae), its larval endoparasitoid Microplitis croceipes (Hymenoptera: Braconidae), and Bacillus thuringiensis. Journal of Economic Entomology 90: 1181-1186.
Chen H, Zhang H, Zhu KYand Throne JE, 2012. Induction of reproductive diapause in Habrobracon hebetor (Hymenoptera: Braconidae) when reared at different photoperiods at low temperatures. Environmental Entomology 41: 697–705.
Hafez M, Salama HS, Aboul-ela R, Zaki FN and Ragaei M, 1995. Effect of Bacillus thuringiensis on Apanteles ruficrus parasitizing the larvae of Agrotis ypsilon. Journal of Islamic Academy of Sciences 8: 33-36.
Hopper KR, 2003. United States Department of Agriculture-Agricultural research service research on biological control of arthropods. Pest Management Science 59: 643-653.
Jarrahi, A and Safavi SA, 2016. Sublethal effects of Metarhizium anisopliae on life table parameters of Habrobracon hebetor parasitizing Helicoverpa armigera larvae at different time intervals. BioControl. 1-9 p.
Jijakli MH, 2010. European market of biological control agents: actual situation and perspectives. Final Report of an EU Project. 416. p.
Lammers JW and MacLeod A, 2007. Report of a pest risk analysis, Helicoverpa armigera. Plant Protection Service (NL) and Central Science Laboratory (UK) Joint Pest Risk Analysis for Helicoverpa armigera. https://secure.fera.defra.gov.uk/phiw/riskRegister/downloadExternalPra. cfm?id=3879. 2017.2.13.
Milonas GP, 2005. Influence of initial egg density and host size on the development of the gregarious parasitoid Bracon hebetor on three different host species. BioControl 50: 415-428.
Mohan M, Sushil SN, Bahtt JC and Gujar GT, 2008. Synergistic interaction between sublethal doses of Bacillus thuringiensis and Campoletis chlorideae in managing Helicoverpa armigera. BioControl 53:375–386.
Oluwafemi AR, Rao Q, Wang X, and Zhang H, 2009. Effect of Bacillus thuringiensis on Habrobracon hebetor during combined biological control of Plodia interpunctella. Insect Science 16: 409–416.
Rasool Khan R, Ashfaq M Ahmed and Talib Sahi SH, 2009. Mortality responses in Bracon hebetor (Say) (Braconidae, Hymenoptera) against some new chemistry and conventional insecticides under laboratory conditions. Pakistan Journal of Agriculture Science 46: 111-119.
Romeis J, Meissle M and Bigler F, 2006. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nature Biotechnology 24: 63-71.
Sanders CJ, Pell JK, Poppy GM, Raybould A, Garcia-Alonso M and Schuler TH, 2007. Host-plant mediated effects of transgenic maize on the insect parasitoid Campoletis sonorensis (Hymenoptera: Ichneumonidae). Biological Control 40: 362-369.
Sansinenea E, 2012. Bacillus thuringiensis Biotechnology. Springer. 392 p.
Sedaratian A, Fathipour Y and Talaei-Hassanloui R, 2014. Deleterious effects of Bacillus thuringiensis on biological parameters of Habrobracon hebetor parasitizing Helicoverpa armigera. BioControl 59: 89-98.
Sharma HC, Dhillon MK and Arora R, 2008. Effects of Bacillus thuringiensis δ‐endotoxin‐fed Helicoverpa armigera on the survival and development of the parasitoid Campoletis chlorideae. Entomologia Experimentalis et Applicata 126: 1-8.
Sing D and Mathew IL, 2015. The Effect of Bacillus thuringiensis and Bt Transgenics on Parasitoids during Biological Control. International Journal of Pure and Applied Bioscience 3(4): 123-131.
Soundararajan RP, 2012. Pesticides- advances in chemical and botanical pesticides. InTech Janeza Trdine, Rijeka, Croatia. 392 p.
Vega FE and Kaya HK, 2012. Insect Pathology. Academic Press.