بررسی تغییرات فعالیت‌های آنزیمی در ریشه ی گیاه خربزه ی آلوده به عامل بیماری پژمردگی فوزاریومی (Fusarium oxysporum f. sp. melonis)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته ی کارشناسی‌ارشد اصلاح نباتات، دانشکده کشاورزی، دانشگاه تربیت مدرس.

2 دانشیار گروه اصلاح نباتات، دانشکده کشاورزی دانشگاه تربیت مدرس.

3 استاد پژوهشی مؤسسه تحقیقات اصلاح و تهیه نهال و بذر.

چکیده

چکیده
بیماری پژمردگی آوندی ناشی از Fusarium oxysporum f. sp. melonis یکی از بیماری‌های مهم خربزه است. به منظور یافتن منبع مقاومت به نژاد 2.1 فوزاریوم، واکنش تعداد 18 توده خربزه جمع‌آوری شده از مناطق مختلف ایران در آزمایش گلخانه‌ای در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در موسسه­ی تحقیقات اصلاح و تهیه نهال و بذر مورد ارزیابی قرار گرفتند. ریشه‌های گیاهچه‌های هر چهار توده در مرحله یک تا دو برگ حقیقی در 50 میلی‌لیتر سوسپانسیون اسپور Fusarium oxysporum f. sp. melonis با غلظت 106 اسپور در میلی‌لیتر به مدت 2-1 دقیقه قرار گرفتند و به سینی‌های کشت برگردانده شدند. توده‌های ایزابل مقاوم، سوسکی نیمه مقاوم، قصری حساس و شادگانی بسیار حساس جهت اندازه‌گیری ترکیبات فنل کل و تعیین میزان فعالیت آنزیم‌های پراکسیداز، پلی‌فنل اکسیداز، کاتالاز و سوپراکسید دیسموتاز مورد استفاده قرار گرفتند. نمونه‌برداری‌ها از قسمت ریشه گیاهان در مراحل زمانی دو، چهار، شش و هشت روز بعد از مایه‌زنی برای بررسی تغییرات فعالیت آنزیمی و فنل کل انجام گرفت. بر اساس نتایج به دست آمده، میزان فعالیت آنزیم‌های پراکسیداز، پلی‌فنل اکسیداز، کاتالاز و سوپراکسید دیسموتاز در طی روزهای مختلف در توده‌های مختلف اختلاف معنی‌داری با یکدیگر داشتند. در روز چهارم و ششم حداکثر فعالیت آنزیم به ترتیب در توده‌های مقاوم و بسیار حساس ایزابل و شادگانی ثبت شد. تغییرات ترکیبات فنلی در طی روزهای چهارم، ششم و هشتم با یکدیگر تفاوت معنی‌داری داشتند. در روز شاهد (روز صفر) بیشترین مقدار فعالیت در توده شادگانی (توده بسیار حساس) ثبت گردید در حالیکه پس از گسترش عامل بیماری بیشترین مقدار آن در روز چهارم پس از مایه‌زنی در توده مقاوم ایزابل بدست آمد. در این بررسی میزان فعالیت آنزیم‌های پراکسیداز، پلی‌فنل اکسیداز، کاتالاز، سوپراکسید دیسموتاز و میزان ترکیبات فنلی به منزله پنج عامل اساسی دفاع بیوشیمایی در برهم‌کنش توده‌های مختلف خربزه با عامل پژمردگی آوندی افزایش می‌یابند.

کلیدواژه‌ها


عنوان مقاله [English]

The Study of Enzymatic Activities Changes in Roots of Cantaloupe Plant Infected with Fusarium Wilt (Fusarium oxysporum f. sp. melonis)

نویسندگان [English]

  • Mehrdad Hanifei 1
  • Hamid Dehghani 2
  • Rajab Choukan 3
1 Former M. Sc. Student, Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
2 Associate Professor, Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
3 Professor, Seed and Plant Improvement Institute, Karaj, Iran.
چکیده [English]

Abstract
Fusarium wilt of cantaloupe caused by Fusarium oxysporum f. sp. melonis (Fom) is an important disease in the Iran and world. To find resistance source of melon, 18 landraces, collected from different parts if Iran, were evaluated against race 1.2 of fom in greenhouse experiment in a randomized complete block design with three replication in seed and plant improvement institute The root of seedlings in 1-2 true leaves stage were in 50ml spore suspension of Fusarium oxysporum f. sp. melonis with 106 concentration for 1-2 minute and were returned to trays. Between these landraces, Shadegani as most susceptible landrace and Samsuri as susceptible landrace and Suski as semi resistant landrace and Isablle as resistant landrace were selected for biochemical studies of peroxidase, poly phenol oxidase, catalase, superoxidase and the roots phenolic compounds. Root samples were taken in zero, two, four, six and eight days after inoculation, and used for study of changes enzymes activities and the total phenolic contents. Based on the results obtained, there is a significant difference in the activity of peroxidase, polyphenol oxidase, catalase and superoxide dismutase on different days and the maximum activity was recorded in the fourth and sixth day and the highest and lowest enzyme activity were in Isablle and Shadegani, respectively. Changes phenolic compounds in fourth, sixth and eighth were significant differences each other. Before infection (0 day) the greatest amount of phenolic compounds was recorded in Shadegani (very susceptible landrace), while the spread of disease agent the highest amount obtained on the fourth day after inoculation in Isablle landrace. In this study, the activity of peroxidase, polyphenol oxidase, catalase, superoxide dismutase and phenolics content increased as five factor in the interaction melon landraces with fusarium wilt.
 

کلیدواژه‌ها [English]

  • Keywords: Cantaloupe
  • Fusarium wilt
  • Enzyme activity
  • Phenolic Compounds
بنی هاشمی ض، 1389. واکنش ارقام Cucumis melo به نژادهای Fusarium oxysporum f. sp. melonis عامل پژمردگی فوزاریومی. مجله بیماری‌های گیاهی. جلد 46 شماره 14، صفحه‌های 11 تا 22.
بهروزین م، 1376. بررسی اثر قارچPuccinia striiformis  روی برخی از پدیده‌های فیزیولوژیکی، بیوشیمیایی و هیستولوژیکی دو رقم گندم. پایان نامه دکترا در رشته بیماری شناسی گیاهی. دانشکده کشاورزی، دانشگاه تربیت مدرس.
رافظی ر، 1393. زراعت خربزه و طالبی. موسسه تحقیقات اصلاح و تهیه نهال و بذر. 107 صفحه.
Abdel-Monai MF, Abdel-Gaid MA and Armanious HA, 2012. Effect of chemical inducers on root rot and wilt diseases, yield and quality of tomato. International Journal of Agriculture Science 7: 211-220.
Aguilar E, Turner D and Sivasithamparam K, 2000. Fusarium oxysporum f. sp. cubense inoculation and hypoxia alter peroxidase and phenylalanine ammonia lyase activities in nodal roots of banana cultivars (Musa sp.) differing in their susceptibility to Fusarium wilt. Australian Journal of Botany 48: 589-596.
Alabouvette C, Tramier R and Grouet D, 1980. Recherches sur la résistance des sols aux maladies VIII. Perspectives d'utilisation do la résistance des sols pour lutter contre les Fusarioses vasculaires. In Annales de Phytopathologie 12: 83-93.
Banihashemi Z, 1968a. The biology and ecology of Fusarium oxysporum f. sp. melonis in soil and root zones of host and non host plants. Ph. D. Thesis. Michigan State University, 114 pp.
Banihashemi Z and Dezeeuw DJ, 1975. The behavior of Fusarium oxysporum f. sp. melonis in the presence and absence of host plants. Phytopathology 65: 1212-1217.
Bloch K, Shichman E, Vorobeychik M, Bloch D and Vardi P, 2007. Catalase expression in pancreatic alpha cells of diabetic and non-diabetic mice. Histochemistry and Cell Biology 127: 227-232.
Bradford MM, 1976. A rapid and susceptible method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72: 248–254.
Cakmak I and Horst W, 1991. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tip of soybean (Glysine max L.). Plant Physiology 83: 463-468.
Campbell CL and Madden LV, 1990. Temporal analysis of epidemics I: description and comparison of disease progress curves. Introduction to Plant Disease Epidemiology. John Wiley and Sons, Inc. New York, USA. 161-202.
Chikh-Rouhou H, Álvarez J and González-Torres R, 2007. Differential interaction between melon cultivars and race 1.2 of Fusarium oxysporum f. sp. melonis. Communications in Agricultural and Applied Biological Sciences 72: 825-829.
Conway KE, 1996. An overview of the influence of sustainable agricultural systems on plant microbial degradation of lignins. Enzyme microbial Techno 6: 434-442.
De Gara L, de Pinto M and Tommasi F, 2003. The antioxidant systems via-a-via reactive oxygen species during plant–pathogen interaction. Plant Physiology and Biochemistry 41: 863-870.
De Vecchi L and Matta A, 1988. An ultrastructural and cytochmical study of proxidase, polyphenoloxidases and phenols in xylem of tomato plants infected with Fusarium oxysporum f. sp. lycopersici or melonis. Caryologia 42: 103-114.
Ehsani-Moghaddam B, Charles MT, Carisse O and Khanizadeh S, 2006. Superoxide dismutase responses of strawberry cultivars to infection by Mycosphaerella fragariae. Journal of Plant Physiology 163: 147-153.
Elad Y and Chet I, 1987. Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology 77: 190-195.
Ficcadenti N, Sestili S, Annibali S and Campanelli G, 2002. Resistance to Fusarium oxysporum f. sp. melonis. Race. 1.2 in muskmelon lines Nad-1. and Nad-2. Plant Disease 86: 897-900.
Friting B and Legrand M, 1993. Mechanisms of Plant defense Responses. Kluwer Academic Publishers. London, UK.
Giannopolitis CN and Ries SK, 1977. Superoxide dismutase I. Occurrence in higher plants. Plant physiology 59: 309-314.
Goodman RN, Király Z and Wood KR, 1986. The biochemistry and physiology of plant disease. University of Missouri Press, 433 pp.
Herman R and Perl-Treves R, 2007. Characterization and inheritance of a new source of resistance to Fusarium oxysporum f. sp. melonis race 1.2 in Cucumis melo. Plant Disease 91: 1180-1186.
Janda T, Szalai G, Rios-Gonzales K, Veisa O and Paldi E, 2003. Comparative study of frost tolerance and antioxidant activity in cereals. Plant Science 164: 301-306.
Kahn V, 1975. Polyphenol oxidase activity and browning of three avocado varieties. Journal of the Science of Food and Agriculture 26: 1319-1324.
Kirk RE, 1995. Experimental Design: Procedures for the Behavioral Sciences. 3rd ed., SAGE Publications, California, USA, 1056 pp.
Lilliefors HW, 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association 62: 399-402.
Lubaina AS and Murugan K, 2012. Effect of growth regulators in callus induction, plumbagin content and indirect organogenesis of Plumbago zeylanica. International Journal of Pharmacy and Pharmaceutical Sciences 4: 334-336.
Macko V, Woodbury W and Stahman MA, 1968. The effect of peroxidase on the germination and growth of mycelium of Puccinia graminis f. sp. tritici. Phytopathology 58: 1250-1254.
Madadkhah E, Lotfi M, Nabipour A, Rahmanpour S, Banihashemi Z and Shoorooei M, 2012. Enzymatic activities in roots of melon genotypes infected with Fusarium oxysporum f. sp. melonis race 1. Science Horticalture, 135: 171-176.
Mandal S, Mitra A and Mallick N, 2008. Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiological and Molecular Plant Pathology 7: 56-61.
Martyn RD and Gordon TR, 1996. Fusarium wilt of melon. Compendium of cucurbit diseases. Edited by TA Zitter, DL Hopkins, and CE Thomas. APS Press, Minnesota, USA, 14-15.
McNally DJ, Wurms KV, Labbé C and Bélanger RR, 2004. Synthesis of C-glycosyl flavonoid phytoalexins as a site–specific response to fungal penetration in cucumber. Physiological and Molecular Plant Pathology 63: 293-303.
Mohammadi M and Kazemi H, 2002. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Science 162: 491-498.
Nakazumi H and Hiari G, 2004. Diallel analysis for resistance of melon (Cucumis melo) to Fusarium wilt caused by Fusarium oxysporum f. sp. melonis race 1,2y. Journal of Horticultural Research Japan 6: 65-70.
Ogawa KI, Kanematsu S and Asada K, 1996. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl. Plant and Cell Physiology 37: 790-799.
Patykowski J, Urbanek H and Kaczorowska T, 1988. Peroxidase Activity in Leaves of Wheat Cultivars Differing in Resistance to Erysiphe graminis DC. Journal of Phytopathology 122: 126-134.
Perchepied L and Pitrat M, 2004. Polygenic inheritance of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in melon. Phytopathology 94: 1331-1336.
Pitrat M, 2006. 2006 Gene list for Melon. CGC. NCSU. USA.
Preston TJ, Muller WJ and Singh G, 2002. Scavenging of extracellular H2O2 by catalase inhibits the proliferation of HER-2/Neu-transformed rat-1 fibroblasts through the induction of a stress response. Journal of Biological Chemistry 276: 9558-9564.
Ray H, Douches D and Hammerschmidt R, 1998. Transformation of potato with cucumber peroxidase: expression and disease response. Physiological and Molecular Plant Pathology 53: 93-103.
Reuveni R and Bothma GC, 1985. The relationship between peroxidase activity and resistance of Sphaerotheca fuligena in melons. Phytopathologische Zeitschrift 114: 260-267.
Risser G and Rode JC, 1973. Breeding for resistance to Fusarium oxysporum f. sp. melonis. Pages 37-39 in: Eucarpia: La Sélection du Melon. G. Risser, ed. INRA, Montfavet-Avignon, France.
SAS /STAT users guide. 2004. SAS 9.1 for windows update. SAS Institute Inc., Cary, NC, USA, 668 pp.
Steiner U and Schönbeck F, 1995. Induced disease resistance in monocots. Induced Resistance to Disease in plants 4: 86-110.
Swain T and Hillis W, 1959. The phenolic constituents of Prunus domestica L. the quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture 10: 63-68.
Tian F, Zhu J, Sun M, Jiang J, Wang S and Zhang W, 2008. Induction and mechanism of cucumber resistance to anthracnose induced by Pieris rapae extract. Frontiers of Agriculture in China 2: 137-140.
Vance C, Kirk T and Sherwood R, 1980. Lignification as a mechanism of disease resistance. Annual Review of Phytopathology 18: 259-288.
Van Loon LC, Bakker PA and Pieters CM, 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36: 453-483.
Yamamoto H, 1995. Pathogenesis and host-parasite specificity in rusts. Pathogenesis and Host Specificity in Plant Disease. Histopathological, Biochemical, Genetic and Molecular Basis 2: 203-212.
Zitter TA, 1998. Fusarium Diseases of Cucurbits. Pp. 733-737. In: Hamson AR, James DW and Topper KF (eds.) Vegetable Crops Fact Sheets. Cornell University, New York, USA.