کنترل زیستی نماتد ریشه گرهی (Meloidogyne javanica) در گوجه ‏فرنگی توسط برخی از باکتری‌های محرک رشد

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

چکیده

نماتدهای ریشه گرهی (Meloidogyne spp.) از مهمترین بیمارگرهای گیاهان از جمله گوجه‌فرنگی هستند. در این پژوهش تاثیر شش باکتری Bacillus amyloliquefaciens،Curtobacterium sp.، Staphylococcus epidermidis،Stenotrophomonas rhizophila،Pseudomonas sp. و Stenotrophomonas sp. strain LU2 بر نماتد M. javanica در گوجه فرنگی بررسی شد. در آزمون تاثیر این باکتری‏ ها بر تفریخ تخم این نماتد در شرایط آزمایشگاهی Curtobacterium sp. با 61%،  S. rhizophila با 52% و B. amyloliquefaciens با 46% به ترتیب بیشترین اثر کنترلی را نشان دادند. در آزمون تاثیر باکتری‏ ها بر مرگ ومیر لاروها در شرایط آزمایشگاهی به ترتیب Curtobacterium sp. با 43%، S. epidermidis با 33% و B. amyloliquefaciens با 32% بیشترین تاثیر را داشتند. در شاخص‌های رشدی گیاه در گلخانه در تیمارهای با و بدون نماتد حاوی باکتری تیمار بدون نماتد حاوی باکتری S. Rhizophila و تیمار نماتددار حاوی باکتری S. epidermidis در شاخص ارتفاع بوته به ترتیب با 48، 18%، در شاخص طول ریشه با 49، 29%، در شاخص وزن تر بوته با 178، 39% و در شاخص وزن خشک بوته با 182، 30% بیشترین تاثیر مثبت را نسبت به تیمار نماتد نشان دادند. در شاخص‌های بیماریزایی مربوط به تعداد لارو در 100 گرم خاک، تعداد گال در یک گرم ریشه، تعداد تخم در یک گرم ریشه تیمار حاوی باکتری  Curtobacterium sp.به ترتیب84%، 15%، 70% و تیمار حاوی باکتری B. amyloliquefaciens به ترتیب 73%، 9/5%، 66% و تیمار حاوی باکتری S. epidermidis به ترتیب %84، %42، %17 کنترل را نسبت به شاهد آلوده به نماتد بدون باکتری نشان دادند.

کلیدواژه‌ها


عنوان مقاله [English]

Biological control of root-knot nematode (Meloidogyne javanica) on tomato plant by some plant growth promoting bacteria (PGPRs)

نویسندگان [English]

  • Mohammad Hadipoor
  • Hossein Mirzaei Najafgholi
  • Kourosh Azizi
Plant Pathology Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
چکیده [English]

Root-knot nematodes (Meloidogyne spp.) are among the most important pathogens of plants, including tomato. In this study the effect of six bacteria viz., Bacillus amyloliquefaciens, Curtobacterium sp., Staphylococcus epidermidis, Stenotrophomonas rhizophila, Pseudomonas sp., and Stenotrophomonas sp. strain LU2 on Meloidogyne javanica was investigated. In the egg hatching test in laboratory conditions eighy days after inoculation, respectively Curtobacterium sp. with 61%, B. amyloliquefaciens with 46%, and Stenotrophomonas sp. with 26% showed the most control effect. In testing the number of live larvae in laboratory conditions, three days after inoculation, respectively Curtobacterium sp. with 43% mortality, B. amyloliquefaciens with 32% mortality, and Stenotrophomonas sp. with 8/5% mortality showed the most control effect. In the growth indices related to the greenhouse among the infected and healthy treatments, the treatments (with and without nematode - Curtobacterium sp.) in the plant height index respectively with 16, 22%, in the root length index with 20, 34% in plant fresh weight index with 40, 86% and in plant dry weight index with 30, 69% compared to control with nematodes showed the most positive effect. Also, the treatments (with and without nematode - B. amyloliquefaciens) in plant height with 14, 17, in root length with 5/76, 22, in plant fresh weight with 29, 36, in plant dry weight index with 23, 26 percent compared to control with nematodes showed a positive effect. The number of galls in one gram of root, the number of eggs in one gram of root of the treatment containing the bacteria Curtobacterium sp. 84%, 15%, and 70%, respectively, and B. amyloliquefaciens respectively showed 73%, 5/9%, and 66% control compared to the control.

کلیدواژه‌ها [English]

  • Greenhouse
  • Laboratory
  • Mortality
  • PGPR
  • Root-knot nematode
Abbasdokht H, 2016. Book Seed Ecology (priming). Publications of Shahrood University of Technology. 194 pp.
Abo-Elyousr  KA, Khan Z, E-Morsi Award M, Abedel-Moneim MF, 2010. Evaluation of    plant extracts and Pseudomonas spp. for control  of root-knot nematode, Meloidogyne    incognita on tomato. Nematropica  40(2): 289–299.
Alkader MAA, 2008. In vitro studies on nematode interactions with their antagonistic fungi in the rhizosphere of various plants. PhD Thesis, Albert-Ludwigs-Universitat. Germany.
Aravind R, Antony D, Eapen SJ, Kumar A, Ramana KV, 2009. Isolation and evaluation of endophytic bacteria against plant parasitic nematodes infesting black pepper (Piper nigrum L.). Indian Journal of Nematology 39(2): 211–217.
Badakhshan M, Mahdikhani Moghadam E, Baghaee Ravari S, Rouhani H, 2017. The combined use of two species of   Trichoderma and Bacillus subtilis in the control of tomato root-knot nematode (Meloidogyne javanica). Plant Pests & Diseases 85(2): 269–278 (In Persian with English abstract).
Bagheri N, Ahmadzadeh  M, Afsharmanesh  H, Saberbaghban  Z, 2015. Evaluation of molecular and biological characteristics of Pseudomonas fluorescens UTPF5 biocontrol agent of Meloidogyne javanica on tomato. Journal of  Cellular & Molecular Researches (Iranian Journal of Biology) 29(1): 15–32 (In Persian with English abstract).
Chinheya CC, Yobo KS, Laing MD, 2017. Biological control of the rootknot nematode, Meloidogyne javanica (Chitwood) using Bacillus isolates, on soybean. Biological Control 109: 37–41.
Dawar S, Tariq M, Zaki MJ, 2008. Application of Bacillus species in control of Meloidogyne javanica (Treub) chitwood on cowpea and mash bean. Pakistan Journal of Botany 40: 439–444.
Díaz-Manzano FE, Amora DX, Martínez-Gómez Á, Moelbak L, Escobar C, 2023. Biocontrol of Meloidogyne spp. in Solanum lycopersicum using a dual combination of Bacillus strains. Frontiers in Plant Science 13: 1077062.
Eltayeb FME, 2017. The effects of Bacillus subtilis bacteria on Meloidogyne javanica (Nematode) infection and tomato plant growth. European Journal of Advanced Research in Biological & Life Sciences 5: 45–51.
Gharabadian F, Jamali S, 2012. Application of corrective materials in control of root knot nematode. Quarterly Journal of Engineering Agriculture & Natural Resources 10(39): 33–31(In Persian with English abstract).
Glick BR, Karaturovíc DM, Newell PC, 1995. A Novel procedure for rapid isolation of plant growth promoting Pseudomonads. Canadian Journal of Microbiology 41: 533–536.
Groover W, Held D, Lawrence K, Carson K, 2020. Plant growth‐promoting rhizobacteria: a novel management strategy for Meloidogyne incognita on turfgrass. Pest Management Science 76(9): 3127–3138.
Hussey RS, Barker KR, 1973. A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Reporter  57: 1025–1028.
Javed N, Gowen SR, Inam-ul-Haq M, Anwar SA, 2007. Protective and curative effect of neem (Azadirachta indica) formulations on the development of root-knot nematode Meloidogyne javanica in roots of tomato plants. Crop Protection 26: 530–534.
Jepson SB, 1987. Identification of root-knot nematodes (Meloidogyne species).1st ed. Wallingford, UK; CAB International. 265pp.
Khan Z, Kim SG, Jeon YH, Khan HU, Son SH, et al., 2008. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresource Technology 99: 3016–3023.
Khyami-Horani H, Al-Banna L, 2006. Efficacy of Bacillus thuringiensis jordanica against Meloidogyne javanica infecting tomato. Phytopathologia Mediterranea 45(2), 153–157.
Majzoub S, Kargarbideh A, Taghvi S, Hamze Zarghani H, 2011. Investigating the effect of paraphytic bacteria on root-knot nematode (Meloidogyne javanica) on cucumber under greenhouse conditions. Iranian Journl of Plant Pathology 48(1) : 69–84 (In Persian).
Merillon JM, Ramawat  KG, 2012. Plant defence: Biological control, Progress in Biological Control. 12. Dordrecht, Springer Science  Business Media. 414 pp.
Oka Y, Chet I, Spiegel Y, 1993. Control of the rootknot nematode Meloidogyne javanica by Bacillus cereus. Biocontrol Science & Technology 3(2): 115–126.
Ortiz IS, Lugo IA, Vázquez EP, Campos JM, 2018. Characterization of Cuban native bacteria isolated from nematodes as potential biological control agents for Meloidogyne spp. Revista de Protección Vegetal 33(1): 1–11.
Ripoll C, Favery B, Lecomte P, Van Damme E, Peumans W, et al., 2003. Evaluation of the ability of lectin from snowdrop (Galanthus nivalis) to protect plants against root-knot nematodes. Plant Science 164: 517 –523.
Roberts DP, Lohrke SM, Meyer SLF, Buyer JS, Bowerrs JH, et al., 2005. Biocontrol agents applied individually and in combination for suppression of soil born diseases of cucumber. Crop Protection 24(2): 141–155.
Ruiz SE, Cristόbal AJ, Reyes RA, Tun SJ, García RA, et al., 2014. In vitro antagonistic activity of Bacillus subtilis strains isolated from soils of the Yucatan Peninsula against Macrophomina phaseolina and Meloidogyne incognita. Phyton International Journal of Experimental Botany 84: 45–47.
Saad AM, Salem HM, El-Tahan AM, El-Saadony MT, Alotaibi SS, et al., 2022. Biological control: An effective approach against nematodes using black pepper plants (Piper nigrum L.). Saudi Journal of Biological Sciences 29(4): 2047–2055.
Siddiqui IA, Hass D, Heeb S, 2005. "Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against root-knot nematode, Meloidogyne incognita". Applied & Environmental Microbiology 71: 5646–5649.
Sikora, RA, Bridge J, 2005. Plant parasitic nematodes in subtropical and tropical agriculture. 2th edition, CABI publishing. 666 pp.
Turatto MF, Dourado FDS, Zilli JE, Botelho GR, 2018. Control potential of Meloidogyne javanica and Ditylenchus spp. using Pseudomonas fluorescent and Bacillus spp. Brazilian Journal of Microbiology 49: 54–59.
Vrain TC, 1977. A Technique for the collection of larvae of Meloidogyne spp. and a comparison of eggs and larvae as inocula. Journal of Nematology 9(3): 249–251.
Zahir ZA, Arshad M, 2004. Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Advances in Agronomy 81: 98–169.
Zaki M, Siddique Z, Akhtar S, 2009. Effects of antagonistic fungi, plant growth promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato. Journal of General Plant Pathology 75: 144–153.