تنوع ژنتیکی جدایه‏ های گونه Colletotrichum fructicola با استفاده از نشانگر مولکولی ISSR و بررسی کارآمدی این تکنیک در تفکیک این گونه از برخی از گونه ‏های جنس Colletotrichum

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران.

2 مجتمع آموزش عالی شهید باکری میاندوآب، دانشگاه ارومیه.

چکیده

در این پژوهش تنوع ژنتیکی 70 جدایه Colletotrichum fructicola بدست آمده از علایم لکه‌برگی روی انواع گیاهان اهلی و وحشی در مناطق مختلف سه استان شمالی ایران شامل گیلان، مازندران و گلستان با استفاده از نشانگر مولکولی ISSR بررسی شد. تجزیه و تحلیل خوشه ‏ای نتایج حاصل از انگشت‏ نگاری DNA با استفاده از پنج آغازگر ISSR برای 70 جدایه‏ C. fructicola به خوبی توانست روابط ژنتیکی بین جدایه‏ ها را نشان دهد. بر این اساس تعداد 70 جدایه در قالب هشت دودمان همسان ه­ای از هم تفکیک شدند. این نتایج نشان داد تنوع ژنتیکی زیادی بین جدایه‏ های این گونه قارچی وجود دارد. هیچ ارتباط مستقیمی بین گروه‏ های انگشت ‏نگاری DNA و منشاء جغرافیایی و میزبانی جدایه ‏ها مشاهده نشد. به منظور ارزیابی کارآمدی نشانگر مولکولی ISSR در تمایز و تفکیک جدایه ­های C. fructicola از جدایه­ های، برخی گونه‏ های نزدیک و غالب جنس Colletotrichum، انگشت ­نگاری DNA با استفاده از این نشانگر مولکولی برای 89 جدایه شامل 85 جدایه C. fructicola، دو جدایه C. gloeosporioides، یک جدایه C. aenigma و یک جدایه C. karstii انجام شد. بر اساس مقایسه الگوی انگشت‌نگاری DNA و فنوگرام ترسیم شده تعداد 89 جدایه در سطح تشابه ژنتیکی 70 درصد در چهار گروه اصلی (A-D) قرار گرفتند. به طوری که جدایه ‏های دودمان ‏های همسانه­ای A-D به ترتیب به گونه‏های C. karstii، C. fructicola، C. gloeosporioides و C. aenigma تعلق داشتند. برای اطمینان از صحت شناسایی، تعداد 28 جدایه از دودمان‏ های کلونی مختلف به عنوان نماینده برای شناسایی مولکولی بر اساس تعیین توالی ناحیه ژنی بتاتوبولین (TUB2) و فاصله بین ژنی APN2/MAT1 (ApMAT) انتخاب شدند. تجزیه و تحلیل تبارزایی صحت شناسایی و نیز کارآمدی نشانگر مولکولی ISSR به عنوان یک ابزار مفید در گروه ­بندی و تفکیک برخی گونه ‏های غالب جنس Colletotrichum را نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Genetic diversity of Colletotrichum fructicola isolates using ISSR molecular marker and efficiency of this technique in differentiating this species from several Colletotrichum species

نویسندگان [English]

  • Somayeh Akbarzadeh 1
  • Alireza Alizadeh 1
  • Abdollah Ahmadpour 2
  • Akbar Shirzad 1
1 Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tbariz, Iran.
2 Higher Education Center Shahid Bakeri Miyandoab, Urmia University. Urmia, Iran.
چکیده [English]

In this study, genetic diversity of 70 isolates of Colletotrichum fructicola obtained from the leaf spot symptoms on a variety of cultivated and wild plants in different regions of three northern provinces of Iran, including Guilan, Mazandaran and Golestan, was investigated using the ISSR molecular marker. Cluster analysis of the results of DNA fingerprinting using five ISSR primers for 70 isolates of C. fructicola cleraly reverlaed genetic diversity among the isolates. Based on this, 70 isolates were differentiated into eight colonal lineages. These results showed that there is a high level of genetic diversity among isolates of this fungal species. No direct correlation between DNA fingerprinting groups and geographical origin and host of the isolates was observed. In order to evaluate the efficiency of ISSR molecular marker in differentiating C. fructicola isolates from isolates of some close and dominant species of the genus Colletotrichum, DNA fingerprinting using this molecular marker for 89 isolates including 85 C. fructicola isolates, two C. gloeosporioides isolates, one isolate for each of C. aenigma and C. karstii was performed. Based on the comparison of the DNA fingerprinting pattern and the drawn phenogram, 89 isolates were placed in four main groups (A-D) at the genetic similarity level of 70%. So that the isolates of colonal lineages A-D belonged to C. karstii, C. fructicola, C. gloeosporioides and C. aenigma species, respectively. To ensure the accuracy of the identification, 28 isolates from different clonal lineages were selected as representatives for molecular identification based on the sequencing of the beta-tubulin (TUB2) gene region and the APN2/MAT1 (ApMAT) intergenic space. Phylogenetic analysis showed the accuracy of identification and the efficiency of ISSR molecular marker as a useful tool in grouping and separating the dominant species of the genus Colletotrichum.

کلیدواژه‌ها [English]

  • DNA fingerprinting
  • Genomic sequencing
  • Molecular markers
  • PCR
  • Taxonom
Alizadeh A, Javan-Nikkhah M, Nourmohammadi Nazarian R, Liu F, Zare R, Fotouhifar KB, Stukenbrock EH, Damm U. 2022. New species of Colletotrichum from wild Poaceae and Cyperaceae plants in Iran. Mycologia 114 (1): 89–113.
Alizadeh A, Javan-Nikkhah M, Salehi Jozani GR, Fotouhifar K, Roodbar Shojaei T, et al., 2017. AFLP, pathogenicity and mating type analysis of Iranian Fusarium proliferatum isolates recovered from maize, rice, sugarcane and onion. Mycologia Iranica 4 (1): 13–28.
Alizadeh A, Javan-Nikkhah M, Zare R, Fotouhifar KB, Damm U, Stukenbrock EH. 2015. New records of Colletotrichum species for the mycobiota of Iran. Mycologia Iranica 2 (2): 95–109.
Alizadeh A, Nikkhah MJ, Fotouhifar KB, Motlagh ER, Rahjoo V. 2010. Genetic diversity of Fusarium proliferatum populations from maize, onion, rice and sugarcane in Iran based on vegetative compatibility grouping. Plant Pathology Journal 26 (3): 216–22.
Alizadeh A. 2015. Systematic study on Colletotrichum species in Southern Caspian coast. PhD Thesis. University of Tehran, 295 pp. (in Persian with English abstract).
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, 1990. Basic local alignment search tool. Journal of Molecular Biology 215 (3): 403–410.
Arade P, Singh P, Mahatma M, 2014. Characterization of Colletotrichum falcatum Went. causing red rot in sugarcane saccharum complex, The Bioscan 9 (1): 375–379.
Arzanlou M, Bakhshi M, Karimi K, Torbati M, 2015. Multigene phylogeny reveals three new records of Colletotrichum spp. and several new host records for the mycobiota of Iran. Journal of Plant Protection Research 55 (2): 198–211.
Atghia O, Alizadeh A, Fotouhifar KB, Damm U, Stukenbrock EH, et al., 2015. First report of Colletotrichum fructicola as the causal agent of anthracnose on common bean and cowpea. Mycologia Iranica 2 (2): 139–140.
Behnia M, Javan-Nikkhah M, Aminian H, Razavi M, Alizadeh A, 2016. Population structure and sexual fertility of Colletotrichum gloeosporioides sensu lato from citrus in Northern Iran. Journal of Agricultural Science and Technology 18 (2): 561–574.
Bhatt P, Rakhashiya P, Thaker V, 2020. Molecular marker development from ISSR for fungal pathogens of Mangifera indica L. Indian Phytopathology 73 (2): 257–265.
Bruns TD, White TJ, Taylor JW, 1991. Fungal molecular systematics. Annual Review of Ecology and Systematics 22(1): 525–564.
Cai L, Hyde KD, Taylor PWJ, Weir B, Waller J, et al., 2009. A polyphasic approach for studying Colletotrichum. Fungal Diversity 39 (1): 183–204.
Cannon PF, Damm U, Johnston PR, Weir BS, 2012. Colletotrichum-current status and future directions. Studies in Mycology 73: 181–213.
Damm U, Cannon PF, Woudenberg JHC, Crous PW, 2012a. The Colletotrichum acutatum species complex. Studies in Mycology 73: 37–113.
Damm U, Cannon PF, Woudenberg JHC, Johnston PR, Weir BS, Tan YP, Shivas RG, Crous PW, 2012b. The Colletotrichum boninense species complex. Studies in Mycology 73: 1–36.
Damm U, Sato T, Alizadeh A, Groenewald JZ, Crous PW, 2019. The Colletotrichum dracaenophilum, C. magnum and C. orchidearum species complexes. Studies in Mycology 92: 1–46.
Dean R, Van Kan JA, Pretorius ZA, Hammond‐Kosack KE, Di Pietro A, et al., 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13 (4): 414–430.
Edgar RC, 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5 (1): 113–120.
Ershad J, 2009. Fungi of Iran. 3th edition. Publications of the Iranian Plant Protection Research Institute. Tehran, 531 pages.
Felsenstein J, 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.
Fu DD, Wang W, Qin RF, Zhang R, Sunb GY, et al., 2014. Colletotrichum fructicola, first record of bitter rot of apple in China. Mycotaxon 126 (1): 23–30.
Fu M, Crous PW, Bai Q, Zhang PF, Xiang J, et al., 2019. Colletotrichum species associated with anthracnose of Pyrus spp. in China. Persoonia 42: 1 –35.
Glass NL, Donaldson GC, 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330.
Grünig CR, Sieber TN, Holdenrieder O, 2001. Characterisation of dark septate endophytic fungi (DSE) using inter-simple-sequence-repeat-anchored polymerase chain reaction (ISSR-PCR) amplification. Mycological Research 105 (1): 24–32.
Han YC, Zeng XG, Xiang FY, Ren L, Chen FY, et al., 2016. Distribution and characteristics of Colletotrichum spp. associated with anthracnose of strawberry in Hubei, China. Plant Disease 100 (5): 996–1006.
Hyde KD, Cai L, Cannon PF, Crouch JA, Crous PW, et al., 2009. Colletotrichum-names in current use. Fungal Diversity 39 (2): 147–183.
Kimura M, 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16 (2): 111–120.
Lee SY, Jung HY, 2018. Colletotrichum kakivorum sp. nov., a new leaf spot pathogen of persimmon in Korea. Mycological Progress 17 (10): 1113–1121.
Liu F, Weir BS, Damm U, Crous PW, Wang Y, et al., 2015. Unravelling Colletotrichum species associated with Camellia: employing ApMAT and GS loci to resolve species in the C. gloeosporioides complex. Persoonia 35 (1): 63–86.
Longya A, Talumphai S, Jantasuriyarat C, 2020. Morphological characterization and genetic diversity of rice blast fungus, Pyricularia oryzae, from Thailand using ISSR and SRAP markers. Journal of Fungi 6 (1): 38.
Ma J, Wang X, Guo M, 2020. First report of anthracnose on Dendrobium officinale caused by Colletotrichum fructicola in Anhui province, China. Plant Disease 104 (2): 574–574.
Ma Z, Michailides TJJCP, 2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection 24 (10): 853–863.
Marin-Felix Y, Groenewald JZ, Cai L, Chen Q, Marincowitz S, et al., 2017. Genera of Phytopathogenic Fungi: GOPHY 1. Studies in Mycology 86: 99–216.
 
McDonald BA, 1997. The population genetics of fungi: tools and techniques. Phytopathology 87 (4): 448–453.
McDonald BA, Linde C, 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology 40 (1): 349–379.
Medeiros LV, Maciel DB, Medeiros VV, Kido LMH, Oliveira NT, 2010. pelB gene in isolates of Colletotrichum gloeosporioides from several hosts. Genetics and Molecular Research 9: 661–673.
Moretti A, Mulè G, Susca A, González-Jaén MT, Logrieco A, 2005. Toxin profile, fertility and AFLP analysis of Fusarium verticillioides from banana fruits. Pages 601–609. In: Mulè G, ed. Molecular diversity and PCR-detection of toxigenic Fusarium species and ochratoxigenic fungi. Springer, Dordrecht.
Mullis KB, Faloona FA, 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology 155: 335–350.
Nabi A, Padder BA, Dar MS, Ahmad M, 2018. Morpho-cultural, pathological and molecular variability in Thyrostroma carpophilum causing shot hole of stone fruits in India. European Journal of Plant Pathology 151(3): 613–627.
Nazari S, Javan-Nikkhah M, Fotouhifar KB, Khosravi V, Alizadeh A, 2015. Bipolaris species associated with rice plant: pathogenicity and genetic diversity of Bipolaris oryzae using rep-PCR in Mazandaran province of Iran. Journal of Crop Protection 4 (4): 497–508.
Nei M, Kumar S, 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
Niu XP, Gao H, Chen Y, Qi JM, 2016. First report of anthracnose on white jute (Corchorus capsularis) caused by Colletotrichum fructicola and C. siamense in China. Plant Disease 100(6): 1243–1243.
O’Donnell K, Cigelnik E, 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7: 103–116.
Pirondi A, Kitner M, Iotti M, Sedláková B, Lebeda A, et al., 2016. Genetic structure and phylogeny of Italian and Czech populations of the cucurbit powdery mildew fungus Golovinomyces orontii inferred by multilocus sequence typing. Plant Pathology 65(6): 959–967.
Pirondi A, Vela-Corcía D, Dondini L, Brunelli A, Pérez-García A, et al., 2015. Genetic diversity analysis of the cucurbit powdery mildew fungus Podosphaera xanthii suggests a clonal population structure. Fungal Biology 119 (9): 791–801.
Ratanacherdchai K, Wang HK, Lin FC, Soytong K, 2010. ISSR for comparison of cross-inoculation potential of Colletotrichum capsici causing chilli anthracnose. African Journal of Microbiology Research 4(2): 076–083.
Salimi F, Javan-Nikkhah M, Padasht Dehkayi F, Alizadeh A, Soltanloo H, et al., 2019. Dynamic of Pyricularia oryzae at the two stages, leaf, and panicle neck blast based on the assessment of population structure at leaf, tiller, and field levels. Iranian Journal of Plant Protection Science 49(2): 187–201 (in Persian with English abstract).
Shenoy BD, Jeewon R, Lam WH, Bhat DJ, Than PP, et al., 2007. Morpho-molecular characterisation and epitypification of Colletotrichum capsici (Glomerellaceae, Sordariomycetes), the causative agent of anthracnose in chilli. Fungal Diversity 27: 197–211.
Shi NN, Du YX, Chen FR, Ruan HC, Yang XJ, 2017. First report of leaf spot caused by Colletotrichum fructicola on Japanese fatsia (Fatsia japonica) in Fujian province in China. Plant Disease 101(8): 1552–1552.
Silva DN, Talhinhas P, Várzea V, Cai L, Paulo OS, et al., 2012. Application of the Apn2/MAT1 locus to improve the systematics of the Colletotrichum gloeosporioides complex: an example from coffee (Coffea spp.) hosts. Mycologia 104(2): 396–409.
Srisuttee R, Nalumpang S, 2007. Genetic relationship of Colletotrichum spp. by morphology and ISSR technique. Journal of Agriculture, A Technical Journal of Faculty of Agriculture, Chiang Mai University 23: 89.
Sun M, Zhao J, Li Q, Forte-Perri V, Bu Z, et al., 2020. First report of anthracnose on Hybrid Mandevilla (Mandevilla× amabilis) caused by Colletotrichum fructicola in China. Plant Disease 102(12): 2653.
Taheri H, Javan-Nikkhah M, Elahinia SA, Khodaparast SA, Golmohammadi M, 2016. Species of Colletotrichum associated with citrus trees in Iran. Mycologia Iranica 3 (1): 1–14.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30 (12): 2725–2729.
Tao G, Liu ZY, Liu F, Gao YH, Cai L, 2013. Endophytic Colletotrichum species from Bletilla ochracea (Orchidaceae), with descriptions of seven new species. Fungal Diversity 61: 139–164.
Velho AC, Rockenbach MF, Mondino P, Stadnik MJ, 2016. Modulation of oxidative responses by a virulent isolate of Colletotrichum fructicola in apple leaves. Fungal Biology 120(10): 1184–1193.
Wang QH, Fan K, Li DW, Niu SG, Hou LQ, et al., 2017. Walnut anthracnose caused by Colletotrichum siamense in China. Australasian Plant Pathology 46 (6): 585–595.
Weir BS, Johnston PR, Damm U, 2012. The Colletotrichum gloeosporioides species complex. Studies in Mycology 73: 115–180.
Yan JY, Jayawardena MMRS, Goonasekara ID, Wang Y, Zhang W, et al., 2015. Diverse species of Colletotrichum associated with grapevine anthracnose in China. Fungal Diversity 71 (1): 233–246.
Zhong S, Steffenson BJ, 2001. Virulence and molecular diversity in Cochliobolus sativus. Phytopathology 91: 469–476.
Zhou S, Smith DR, Stanosz GR, 2001. Differentiation of Botryosphaeria species and related anamorphic fungi using Inter Simple or Short Sequence Repeat (ISSR) fingerprinting. Mycological Research 105 (8): 919–926.
Zhou X, Li M, Rao B, Chen Y, Cai C, et al., 2020. First report of anthracnose on Paris polyphylla var. chinensis caused by Colletotrichum fructicola in Northern Fujian, China. Plant Disease 104 (10): 2728.