اثر میزبان روی برهم کنش قارچ بیمارگر حشراتMetarhizium anisopliae و زنبور پارازیتوئید Trichogramma brassicae، بید آرد Ephestia kuehniella و بید غلاتSitotroga cerealella

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده کشاورزی، پردیس دانشگاه ارومیه، ارومیه، ایران.

2 گروه گیاه پزشکی، دانشکده کشاورزی، پردیس دانشگاه ارومیه، ارومیه، ایران.

3 بخش تحقیقات گیاه‌پزشکی، مرکز تحقیقات کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ارومیه، ایران.

4 گروه حشره شناسی، دانشگاه ایالتی کانزاس، مرکز تحقیقات کشاورزی هیس- کانزاس- امریکا.

چکیده

چکیده
زنبور پارازیتوئیدTrichogramma brassicae  یکی از مهمترین دشمنان طبیعی مهار زیستی مرحله تخم آفات گیاهی می­باشد. پرورش این پارازیتوئید روی میزبان­های مختلف و برهم­کنش آن با قارچ بیمارگر حشرات  Metarhizium anisopliae در کنترل آفات حایز اهمیت می­باشد. لذا، این قارچ بیمارگر به همراه زنبور پارازیتوئید تریکوگراما می­تواند در مدیریت تلفیقی افات مورد استفاده قرار گیرد. در این بررسی تاثیر غلظت­های قارچ M. anisopliae جدایه M14 روی تخم­های پارازیته شده بید آرد Ephestia kuehniella و بید غلات Sitotroga cerealella، ترجیح تخم­ریز زنبور پارازیتوئید و درصد تفریخ آن روی میزبان‌ها، همچنین ترجیح تخم­ریزی زنبور پارازیتوئید روی تخم­های بید آرد و بید غلات آلوده به غلظت­های مختلف جدایه قارچی و تیمار شاهد مطالعه شد. تجزیه پروبیت داده­های حاصل از تاثیر غلظت­های قارچ روی تخم­های بیدآرد و بید غلات حاوی زنبور پارازیتوئید بیشترین مرگ و میر یا کاهش تفریخ زنبور پارازیتوئید روی بید آرد مشاهده شد. در آزمایش ترجیح میزبانی به روش انتخابی و غیر انتخابی بیشترین تعداد تخم پارازیته شده و خروج زنبور پارازیتوئید در تخم بید آرد ثبت شد. در بررسی اثر غلظت­های مختلف جدایه قارچ بر میزان پارازیته شده تخم­های بید آرد و بید غلات نشان داد در غلظت­های پایین بین تیمارها و شاهد اختلاف معنی­داری وجود ندارد. اما در غلظت­های بیشتر اختلاف معنی­داری مشاهده شد. بطوریکه، میانگین تعداد تخم پارازیته شده در تیمار شاهد بیشتر بود. نتایج حاصل از پژوهش حاضر مؤید آن است که در استفاده دو عامل زیستی باید توجه بیشتری‌ به برهم­ کنش میان آنها معطوف شود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Interactions of the entomopathogenic fungus, Metarhizium anisopliae and the egg parasitoid, Trichogramma brassicae reared on Ephestia kuehniella and Sitotroga cerealella

نویسندگان [English]

  • Raana Ghodrati 1
  • Shahram Aramideh 2
  • Maryam Frozan 3
  • JP Michaud 4
1 Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
2 Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
3 Plant Protection Research Department, West Azerbaijan Agricultural and Natural Resources Research Center, AREEO, Urmia, Iran.
4 Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS. USA.
چکیده [English]

Abstract
The parasitoid wasp Trichogramma brassicae is one of the most important natural enemies used to biologically inhibit the egg stage of pests. Rearing of this parasitoid on different hosts and its interaction with entomopathogenic fungi Metarhizium anisopliae is very important in pest control. Therefore, this entomopathogenic fungus along with trichogramma parasitoid can be used in integrated pest management. In this study, effect of M. anisopliae (isolate M14) concentrations on parasitized eggs of Ephestia kuehniella and Sitotroga cerealella, oviposition preference and hatching percentage on the hosts, also, oviposition preference by parasitoid on E. kuehniella and S. cerealella eggs impregnated with different concentrations of M. anisopliae (isolate M14) and control treatment were studied. Probit analysis obtained from the effect of M. anisopliae (isolate M14) concentrations on E. kuehniella and S. cerealella eggs containing parasitoid showed the highest mortality of parasitoid on E. kuehniella. In the host preference test by choice and non-choice methods, the highest number of parasitic eggs and parasitoid hatching were recorded in E. kuehniella. In the study of the effect of different concentrations of M. anisopliae on the parasitized rate of hosts eggs showed that at low concentrations there is no significant difference between treatments and control, but in higher concentrations, a significant difference was observed, and mean of parasitized eggs was higher in the control. The results of present study confirm that in the simultaneous use of two biological agents, more attention should be paid to the interaction between them to control of target pest.

کلیدواژه‌ها [English]

  • Keywords: Biocontrol
  • Interaction
  • Host preference
  • Natural enemy
  • Rearing
References
 
Abbott WS, 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267.
Abdollahi M, 2018. Application of Metarhizium anisopliae against Meloidogyne javanica in soil amended with oak debris. World Academy of Science, Engineering and Technology International Journal of Agricultural and Biosystems Engineering 12 (2): 40–46.
Bahmani N, Ostovan H, Latifian M, Rad B, 2012. Study the lethal doses of suitable isolate of Beauveria bassiana for microbial control of Ephestia kuehniella on sayer date cultivar. Plant Protection Journal 4 (13); 67–81.
Bai B, Smith SM, 1993. Effect of host availability on reproduction and survival of the parasitoid wasp Trichogramma minutum. Ecological Entomology 18: 297–286.
Baverstock J, Alderson PG, Pell JK, 2005. Influence of the aphid pathogen Pandora neoaphidis on the foraging behavior of the aphid parasitoid Aphidius ervi. Ecological Entomology 30: 665–672.
Bigler F, Meyer A, Bosshart S, 1987. Quality assessment in Trichogramma maidis Pintureau et Voegelé reared from eggs of the factitious hosts Ephestia kuehniella Zell. and Sitotroga cerealella (Olivier). Journal of Applied Entomology 104: 340–353.
Ci G, Amaro F, Figueiredo E, Godinho M, Mexia A, 2005. Productivity and quality aspects concerning the laboratory rearing of Trichogramma spp. (Hymenoptera: Trichogrammatidae) and its factitious host, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Boletin de Sanidad Vegetal Plagas 31: 21–25.
Dalvi LP, Polanczik RA, Pratissoli D, Melo RL, Holtz AM, 2007. Seletividade de Lecanicillium lecanii (Zimm.) Zare & W. Gams (classe-forma: Hyphomycetes) ao parasitóide Trichogramma atopovirilia Oatman & Platner, 1983 (Hymenoptera: Trichogrammatidae). Ciênc. Agrotecnol. 31: 1392–1395
Defaria MR, Wraight SP, 2007. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification off ormulation types. Biological Control 43 (3): 237–256.
Driver F, Milner RJ, Trueman JWH, 2000. A taxanomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycology Research 104: 134–150.
Dunkel FV, Jaronski ST, 2003. Development of a bioassay system for the predator, Xylocoris flavipes (Hem: Anthocoridae) and its use in subchronic toxicity/ pathogenicity studies of Beauveria bassiana strain GHA. Journal of Economic Entomology 96: 1045–1053.
Fazeli Dinan M, Talaei Hassanloui R, Allahyari H, Kharazi Pakdeland A, Goldansaz SH, 2012. Effect of fungus, Lecanicillium longisporum (hypocreales: clavicipitaceae) on life table parameters of Encarsia formosa (hymenoptera: aphelinidae). Plant Pest Research 2 (2): 1–11.
Foster S, Denholm I, Devonshire A. 2000. The ups and downs of insecticide resistance in peach-potato aphids (Myzus persicae) in the UK. Crop Protection 19 (8): 873–879.
Fransen JJ, Van Lenteren JC, 1993. Host selection and survival of the parasitoid Encarsia formosa on greenhouse whitefly, Trialeurodes vaporariorum, in the presence of hosts infected with the fungus Aschersonia aleyrodis. Entomologia Experimentalis et Applicata 69: 239–249.
Godonou I, James B, Atcha-Ahowé C, Vodouhe S, Kooyman C, et al., 2009. Potential of Beauveria bassiana and Metarhizium anisopliae isolates from Benin to control Plutella xylostella L. (Lepidoptera: Plutellidae). Crop Protection 28 (3): 220–224.
Hochberg ME, Lawton JH, 1990. Competition between kingdoms. Trends in Ecology and Evolution 5: 367–371.
Jarrahi A, Safavi SA, 2016. Effects of pupal treatment with Proteus® and Metarhizium anisopliae sensu lato on functional response of Habrobracon hebetor parasitizing Helicoverpa armigera in an enclosed experiment system. Biocontrol Science and Technology 26: 206–216.
Lashgari A, Talebi AA, Fathipour Y, Farahani S, 2010. Study on demographic parameters of Trichogramma brassicae (Bezdenko) (Hym., Trichogrammatidae) on three host species in laboratory conditions. Journal of Entomological Research 2 (5): 49–60.
Latifian M, Soleymannejadian E, Ghazavy M, Mosadegh M S, Rad B, 2011. Effect of the fungus, Beauveria bassiana (Balsamo) on the functional response and host preference of the parasitoid Cephalonomia tarsalis (Ashmead) in larval population of the saw-toothed beetle Oryzaephilus surinamensis L. Journal of Entomological Research 3 (3): 253–266.
Li LY, 1994. Worldwide use of Trichogramma for biological control on different crops. CAB International, Wallingford, CT, pp 37–53.
Lord JC, 2001. Response of the wasp Cephalonomia tarsalis (Hymenoptera: Bethylidae) to Beauveria bassiana (Hyphomycetes: Moniliales) as free conidia or infection in its host, the sawtoothed grain beetle, Oryzaephilus surinamensis (Coleoptera: Silvanidae). Biological Control 21 (3): 300–304.
Martínez AM, Baena, M, Figueroa JI, Estal PD, Medina M, et al., 2014. Primer registro de Engytatus varians (Distant) (Hemiptera: Heteroptera: Miridae) en México y su depredation sobre Bactericera cockerelli (Šulc) (Hemiptera: Triozidae): una revisión de su distribución y hábitos. Acta Zoológica Mexicana 30: 617–624.
Mills N, 2010. Egg parasitoids in biological control and integrated pest management. In: Cônsoli FL, Parra JRP, Zucchi RA. (eds) Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma. Springer, Dordrecht, The Netherlands, pp. 389–412.
Mohammed AA, Hatcher PE, 2017. Combining entomopathogenic fungi and parasitoids to control the green peach aphid Myzus persicae. Biological Control 110: 44–55.
Mokhtari B, Samih MA, Mahdian K, Bagheri MR, 2015. Developmental periods of Oenopia conglobata contaminata (Col.: Coccinellidae) reared on eggs of Sitotroga cerealella (Lep.: Gelechiidae) and Ephestia kuehniella (Lep.: Pyralidae) at constant temperatures. Journal of Entomological Society of Iran 35 (3): 15–27
Osman KA, Al-Rehiayani S, 2003. Risk assessment of pesticide to human and the environment. Saudi Journal of Biological Sciences 10: 81–106.
Pell JK, Vandenberg JD, 2002. Interaction among aphid Diuraphis noxia, the entomopathogenic fungus Paecilomyces fumosoroseus and the coccinellid, Hippodamia convergens. Biocontrol Science and Technology 12: 217–224.
Polis GA, Holt RD, 1992. Intraguild predation: The dynamics of complex trophic interactions. Trends in Ecology & Evolution 7: 151–154.
Potrich M, Alves LFA, Lozano ER, Bonini AK, Neves PMOJ, 2017. Fungus Metarhizium anisopliae on the egg parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) under controlled conditions. Journal of Economic Entomology110 (6): 2318–2324.
Potrich M, Alves LFA, Lozano ER, Roman JC, Pietrowski V, et al., 2015. Interactions between Beauveria bassiana and Trichogramma pretiosum under laboratory conditions. Entomologia Experimentalis et Applicata 154: 213–221.
Pourian HR, Talaei-Hassanloui R, Kosari AA, Ashouri A, 2011. Effect of Metarhizium anisopliae on searching, feeding and predation by Orius albidipennis (Hem.: Anthocoridae) on Thrips tabaci (Thy.: Thripidae). Biocontrol Science and Technology 21: 15–21.
Pratissoli D, Oliveira HN, Gonc J R, Zanuncio J C, Holtz AM, et al., 2004. Changes in biological characteristics of Trichogramma pretiosum (Hym.: Trichogrammatidae) reared on eggs of Anagasta kuehniella (Lep.: Pyralidae) for 23 Generations. Biocontrol Science and Technology14: 313-319.
Quesada-Moraga, E, Ruiz-Garcı´a A, Santiago-A´ lvarez C, 2006. Laboratory evaluation of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against puparia and adults of Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology 99: 1955–1966.
Rännbäck LM, Cotes B, Anderson P, Rämert B. Meyling NY, 2015. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae. Journal of Invertebrate Pathology124: 78–86.
Rashki M, Kharazi-Pakdel A, Allahyari H, van Alphen JJM, 2009. Interactions among the entomopathogenic fungus, Beauveria bassiana (Ascomycota: Hypocreales), the parasitoid, Aphidius matricariae (Hymenoptera: Braconidae), and its host, Myzus persicae (Homoptera: Aphididae). Biological Control 50: 324–328.
Robertson JL, Russell RM, Preisler HK, Savin NE, 2007, Pesticide Bioassays with Arthropods. CRC Press, 199p.
Rosenheim JA, 1998. Higher-order predators and the regulation of insect herbivore populations. Annual Review of Entomology 43: 421–447.
Sher RB, Parrella MP, 1996. Integrated biological control of leaf miners, Liriomyza trifolii, on greenhouse chrysanthemums. Bulletin OILB/SROP 19: 147–150.
Sherratt TN, Harvey IF. 1993. Frequency dependent food selection by arthropods: A Review Biological Journal of the Linnaean Society 48: 167–186.
St-Onge M, Cormier D, Todorova S, Lucas E, 2016. Conservation of Ephestia kuehniella eggs as hosts for Trichogramma ostriniae. Journal of Applied Entomology 140: 218–222.
Suh CPC, Orr DB, Van Duyn, JW, 2000. Effect of Insecticides on Trichogramma exiguum (Trichogrammatidae: Hymenoptera) Preimaginal Development and Adult Survival. Journal of Economic Entomology 93: 577–583.
Sun YP, 1950. Toxicity indexes an improved method of comparing the relative toxicity of insecticides. Journal of Economic Entomology 43 (1): 45–53.
Talebi Jahromi Kh, 2006. Pesticides Toxicology, First Ed., University of Tehran Press,. Tehran, 492 pp.
Zamanpour M, Sedaratian-Jahromi A, Mohammadi H A, Ghane Jahromi M, 2019. The effect of Beauveria bassiana on preference and switching behavior in Phytoseiulus persimilis (Acari: Phytoseiidae). Plant Pest Research 9 (1): 75–93.