ارزیابی اثر تیمارهای مختلف در آلودگی زدایی بذرهای گوجه‌فرنگی آلوده به باکتری Clavibacter michiganensis subsp. michiganensis

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاه پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران.

2 موسسه تحقیقات گیاه پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.

چکیده

چکیده
شانکر باکتریایی  با عامل Clavibacter michiganensis subsp. michiganensis از بیماری‌های مهم،  با خسارت اقتصادی گوجه فرنگی در دنیا و  ایران می ­باشد. مهار این بیماری به دلیل بذربرد بودن و بقای طولانی مدت باکتری روی بذر مشکل است. بهترین روش در کنترل بیماری، استفاده از یک برنامه مدیریتی بر اساس کاربرد بذرهای عاری از باکتری بیماری­زا و ارقام مقاوم است. در این تحقیق، اثر تیمار حرارتی (طیف دمایی 44 تا 64 درجه سلسیوس به مدت 15، 25 و 35 دقیقه)، سموم شیمیایی (بردو، نوردوکس، کوپراکسی‌کلرید و مانکوزب در سه دُز مختلف) و آنتی‌بیوتیک (نالدیکسیک‌اسید، جنتامایسین، داکسی‌سیلین، استرپتومایسین، اریترومایسین، کلوگزاسیلین، ریفامپین، سفالکسین و فورازولیدون) بر سالم ­سازی سطحی بذرهای آلوده به باکتری، در آزمایشگاه مورد ارزیابی قرار گرفت. نتایج نشان داد حرارت­درمانی، روشی مناسب برای ضدعفونی سطحی بذرها است. تیمار دمایی 56 درجه سلسیوس به مدت 35 دقیقه، بدون تاثیر زیاد روی جوانه‌زنی بذرها، قادر به حذف 98% باکتری از بذرهای تیمار شده بود. در دماهای پایین‌تر، عدم آلودگی زدایی موفقیت ­آمیز بذرها و در دماهای 60 و 64 درجه سلسیوس، تاثیر منفی زیاد روی جوانه‌زنی بذرها مشاهده شد.  تیمار بذور با آنتی ­بیوتیک­ های ریفامپین، نالدیکسیک‌اسید، داکسی‌سایکلین و جنتامایسین منجر به به حذف کامل (100 %) باکتری ­ها، بدون تأثیر منفی روی جوانه‌زنی گردید. تیمار بذرها با سموم شیمیایی نشان داد، هیچ یک‌ از ترکیبات یاد شده قادر به حذف کامل باکتری از بذرها نبودند و برخی از این سموم  مورد استفاده باعث کاهش قابل توجه جوانه‌زنی بذرها شدند. به طور کلی، کاربرد آنتی ­بیوتیک­ های مورد مطالعه موثرترین روش سالم­سازی سطحی بذرهای گوجه­ فرنگی آلوده به باکتری در سطوح تحقیقاتی می ­باشد اما جهت کاربرد عملی تیمار حرارتی 56 درجه سلسیوس به مدت 35 دقیقه قابل توصیه می­ باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of various treatments on disinfestation of tomato seeds infected with Clavibacter michiganensis subsp. Michiganensis

نویسندگان [English]

  • Farzaneh Mohammadsour 1
  • Maryam Khezri 2
  • Abolghasem Ghasemi 2
1 Department of Plant Protection, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.
2 Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Abstract
Bacterial canker caused by Clavibacter michiganensis subsp. michiganensis is one of the most serious and economically important diseases of tomato worldwide, incluing Iran.  Control of this disease is difficult due to seed-borne nature and long term survival of the bacterial agent on seed. A preventive disease management program based on using pathogen-free seeds and resistant cultivars is the best method for the disease control. In this research, effects of thermal treatment (44-64 °C for 15, 25 and 35 minutes), chemical compounds (Bordeaux, Nordox, copper oxychloride and Mancozeb at three different doses), and nine antibiotics (nalidixic acid, gentamicin, doxycycline, streptomycin, erythromycin, cloxacillin, rifampin, cefalexin and furazolidone) were investigated on tomato seeds disinfestation under laboratory conditions. The results showed that thermotherapy is a suitable approach for seed disinfestation as thermal treatment of 56 °C for 35 minutes eliminated 98% of bacterial infestation without any effect on seed germination. In lower temperature, seed disinfestation was unsuccessful, and treatments of 60 and 64 °C showed a significant negative effect on seed germination. Treatments with Rifampin, nalidixic acid, doxycycline and gentamicin were effective in the elimination of 100% bacteria on seeds without any negative effect on seed germination. Treating infested seeds with the copper compounds showed that none of them were able to eliminate the bacteria, and significantly reduced their germination. Overall, the application of the studied antibiotics is the most effective method for tomato seeds disinfestation for research purposes, but heat treatment  at 56 °C for 35 minutes for the practical application is recommended.

کلیدواژه‌ها [English]

  • Keywords: Canker
  • Disinfestation
  • Seed born
  • Thermotherapy
  • Tomato
Aghazadeh Z, Khezri M, Sadeghinasab F, 2017. Identification of pathogenic bacteria in tomato fields of Urmia. 1st International and 5th National Congress on Organic vs. Conventional Agriculture, August 16–17, University of Mohaghegh Ardabili, Ardabil, Iran. P. 278.
Anonymous. 2020. The Agricultural Production Domain. Available at: http://www.fao.org/faostat/en/#data/QC [accessed on 23 August 2020].
Aysan Y, Horuz S, 2016. Plant pathogenic bacteria control through seed application. In: Kannan VR, Bastas KK (eds.). Sustainable Approaches to Controlling Plant Pathogenic Bacteria. CRC Press, Boca Raton. Pp. 323–332.
Bellino A, Lofrano G, Carotenuto M, Libralato G, Baldantoni D, 2018. Antibiotic effects on seed germination and root development of tomato (Solanum lycopersicum L.). Ecotoxicology and Environmental Safety 148: 135–141.
Benton Jones J, 2007. Tomato Plant Culture: In the Field, Greenhouse, and Home Garden. 2nd ed. CRC press, Boca Raton, USA. 420 pp.
Bergougnoux V, 2014. The history of tomato: from domestication to biopharming. Biotechnology Advances 32 (1): 170–189.
Blancard D, 2012. A Color Handbook Tomato Diseases, Identification, Biology and Control. 2nd ed. CRC press, Boca Raton, USA. 688 pp.
Borkar SG, Yumlembam RA, 2017. Bacterial Diseases of Crop Plants. CRC Press, Boca Raton, USA. 594 pp.
Carisse O, Ouimet A, Toussaint V, Philion V, 2000. Evaluation of the effect of seed treatments, bactericides, and cultivars on bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians. Plant Disease 84 (3): 295–299.
Chang RJ, Ries SM, Pataky JK, 1992. Local sources of Clavibacter michiganensis ssp. michiganensis in the development of bacterial canker on tomatoes. Phytopathology 82: 553–560.
Davari AA, Rahnama K, Rabbani nasab H, 2020. Investigation of some effective factors on production and pathogenicity of zoospores of Phytophthora capsici and P. nicotianae on tomato fruit. Journal of Applied Researches in Plant Protection 9 (1): 1–12.
de León L, Siverio F, López MM, Rodríguez A, 2011. Clavibacter michiganesis subsp. michiganensis, a seedborne tomato pathogen: healthy seeds are still the goal. Plant Disease 95 (11): 1328–1338.
Divsalar M, Shakeri M, Khandan A, 2014. Study on thermotherapy treatment effects on seed germination and vigor of tomato cultivars. International Journal of Plant and Soil Science 3 (6): 799–809.
Fatmi M, Schaad NW, Bolkan HA, 1991. Seed treatments for eradicating Clavibacter michiganensis subsp. michiganensis from naturally infected tomato seeds. Plant Disease 75: 383–385.
Ftayeh R, 2009. Elimination of Clavibacter michiganensis subsp. michiganensis from tomato cultures and seeds by highly sensitive detection methods and effective seed treatments. PhD thesis, Plant Pathology, University of Göttingen, Germany.
Kritzman G, 1993. A chemo–thermal treatment for control of seed–borne bacterial pathogens of tomato. Phytoparasitica 21: 101–109.
Lewis Ivey ML, Miller SA, 2004. Evaluation of hot water seed treatment for the control of bacterial leaf spot and bacterial canker on fresh market and processing tomatoes. Acta Horticulture 695: 197–204.
Mazarei M, Orumchi S, Lora C, 1993. Investigation of bacterial canker of tomato in West Azarbaijan, Iran. 11th Iranian Plant Protection Congress, 28 August–2 September, University of Gilan, Rasht, Iran. P. 160. (in Persian with English abstract).
Milijašević–Marčić S, Gartemann KH, Frohwitter J, Eichenlaub R, Todorović B, et al., 2012. Characterization of Clavibacter michiganensis subsp. michiganensis strains from recent outbreaks of bacterial wilt and canker in Serbia. European Journal of Plant Pathology 134 (4): 697–711.
Nandi M, McDonald J, Liu P, Weselowski B, Yuan ZC, 2018. Clavibacter michiganensis ssp. michiganensis: bacterial canker of tomato, molecular interactions and disease management. Molecular Plant Pathology 19 (8): 2036–2050.
Nega E, Ulrich R, Werner S, Jahn M, 2003. Hot water treatment of vegetable seed, an alternative seed treatment method to control seed–borne pathogens in organic farming. Journal of Plant Diseases and Protection 110 (3): 220–234.
Olmez Z, Gokturk A, Temel F, 2007. Effect of some pretreatments on seed germination of nine different droughts–tolerance shrubs. Seed Science and Technology 35 (1): 75–87.
Parsa N, Viani V, Arzanloo M, 2018. Evaluation of different tomato varieties cultivated in East–Azerbayjan province for resistance to the race 1 of Fusarium oxysporum f.sp. lycopersici. Journal of Applied Researches in Plant Protection 7 (3): 77–89.
Peralta IE, Spooner DM, 2007. History, origin and early cultivation of tomato (Solanaceae). In: Razdan MK, Mattoo AK (eds.), Genetic Improvement of Solanaceous Crops, vol. 2: Tomato. Science Publishers Inc, New Hampshire. Pp. 1–27.
Pradhanang P, Collier G, 2007. How effective is hydrochloric acid treatment to control Clavibacter michiganensis subsp. michiganensis contamination in tomato seed? In II International Symposium on Tomato Diseases. Kusadasi, Turkey. P. 808. 
Psallidas PG, 1993. Pseudomonas syringae pv. avellanae pathovar nov., the bacterium causing canker disease on Corylus avellanae. Plant Pathology 42 (3): 358–363.
Schaad NW, Jones JB, Chun W, 2001. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. 3th ed. APS Press, St. Paul, Minnesota, USA. 373 pp.
Sen Y, der Wolf JV, Visser RGF, van Heusden S, 2015. Bacterial canker of tomato: current knowledge of detection, management, resistance and interaction. Plant Disease 99 (1): 1–13.
Valenzuela M, Méndez V, Montenegro I, Besoain X, Seeger M, 2019. Streptomycin resistance in Clavibacter michiganensis subsp. michiganensis strains from Chile is related to an rpsL gene mutation. Plant Pathology 68: 426–433.
Yang WENCAI, Francis DM, 2007. Genetics and breeding for resistance to bacterial diseases in tomato: prospects for marker–assisted selection. In: Razdan MK, Mattoo AK (eds.), Genetic Improvement of Solanaceous Crops, vol. 2: Tomato. Science Publishers Inc., New Hampshire. Pp. 379–419.