افزایش کارایی حشره کش میکروبی Bt در تلفیق با عصاره ی اتانولی برگ سرو نقره ای Cupressus arizonica علیه کرم برگخوار چغندر قند Spodoptera exigua (Lep.: Noctuidae)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه گیاه‌پزشکی، دانشکده ی کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز.

2 دانشیار گروه گیاه‌پزشکی، دانشکده ی کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز.

3 دانشجوی کارشناسی ارشد حشره شناسی کشاورزی،گروه گیاه‌پزشکی، دانشکده ی کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز.

چکیده

چکیده
حشره­کش میکروبی Bt در سطح وسیع برای کنترل لاروهای کرم برگخوار چغندر قند Spodoptera exigua Hb. مورد استفاده قرار می­گیرد. استفاده از دوزهای بالا برای کنترل موثرتر، احتمال بروز مقاومت را افزایش می­دهد. تلفیق عوامل کنترلی مختلف به­عنوان یک ابزار موثر در کاهش دوز مصرفی از اهمیت و جایگاه بالایی در برنامه­های مدیریت آفات برخوردار است. در این بررسی اثرات کشندگی و زیر کشندگی حشره­کش میکروبی Bt و تلفیق آن با عصاره­ی اتانولی برگ­های سرو نقره­ای بر مرگ و میر و برخی فراسنجه­های زیستی کرم برگخوار چغندر قند مورد مطالعه قرار گرفت. غلظت­های مختلف دو عامل کنترلی به­صورت مخلوط با غذای مصنوعی در اختیار لاروها قرار گرفتند. نتایج نشان داد که، مرگ و میر، درصد شفیره شدن، طول دوره­ی لاروی و درصد ظهور حشرات کامل به­طور معنی­داری تحت تاثیر قرار گرفت. مقادیرLC50  حشره­کش میکروبی Bt در روز اول 25/4 و در روز هفتم بررسی 76/0 گرم بر لیتر بدست آمد. در تلفیق غلظت دو گرم بر لیتر Bt با غلظت­های 5/12 و 25/6 گرم بر لیتر عصاره­ی برگ سرو نقره­ای، کمترین مقدار کارایی تبدیل غذای خورده شده در مقایسه با شاهد ثبت گردید (به­ترتیب 1/16 و 9/17 درصد در مقایسه با99/38 درصد در شاهد مثبت). با توجه به افزایش کارایی Bt در تلفیق با عصاره­ی گیاهی در مرگ و میر لاروها و همچنین کاهش فراسنجه­های تغذیه­ای لاروهای کرم برگخوار چغندر قند، امکان استفاده از تلفیق دو عامل در شرایط گلخانه­ای و مزرعه­ای درراستای مدیریت مقاومت و کنترل پایدار جمعیت آفت وجود دارد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Enhancing Efficiency of Bacillus thuringiensis by Leaf Extract of Cupressus arizonica against Spodoptera exigua (Lep.: Noctuidae)

نویسندگان [English]

  • Davood Mohamadi 1
  • Naser Evazian Kari 2
  • zahra Sharifi Azar 3
1 Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz-Iran.
2 Associate Professor, Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz-Iran.
3 MSc Student of Entomology, Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz-Iran.
چکیده [English]

Abstract
Bacillus thuringiensis generally applies for controlling of Spodoptera exigua larvae. Applying high doses for effective control increases the risk of resistance developing. Integration of different pest controlling tactics is a useful component of pest management by decreasing the applied doses. Here, the lethal and sublethal effects of Bacillus thuringiensis (Bt) in combination with ethanolic extract of Cupressus arizonica (CA) on mortality and some biological parameters of Spodoptera exigua were evaluated. For bioassays, different concentrations of both agents, incorporated into artificial diet of insects. The results revealed that, larval mortality and life spam, pupation and adult emergence were significantly affected. LC50 values of Bt was measured as 4.25 and 0.76 g/l in first and 7th days of experiments respectively. Efficiency of ingested food (ECI) decreased to 16.1 and 17.9% in combination treatments of Bt (2 g/l) with respectively 12.5 and 6.25 g/l of CA extract in comparison with controls as 38.99%. Significantly higher larval mortality and adverse effects on nutritional parameters of the pest in combination treatments confirm the suitability of this combination as a candidate for greenhouse and field studies to aim of reduce the Bt resistance phenomena frequency and sustainable control of pest population.
 

کلیدواژه‌ها [English]

  • Key words: ECI
  • Ethanolic extract
  • Synergistic effects
  • Life spam
  • Nutritional parameters
Abdelgaleil SAM and El-Sabrout AM, 2018. Anti-nutritional, antifeedant, growth-disrupting and insecticidal effects of four plant essential oils on Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Crop Protection7(2): 135-150.
Abedi Z, Saber M, Vojoudi S, Mahdavi V and Parsaeyan E, 2014. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. Journal of Insect Science 14: 1-9.
Adams RP and Bartel JA, 2009. Geographic variation in Hesperocyparis (Cupressus) arizonica and H. glabra: RAPDS analysis. Phytologia 91(1): 244-250.
Ahmad M, Farid A and Saeed M, 2018. Resistance to new insecticides and their synergism in Spodoptera exigua (Lepidoptera: Noctuidae) from Pakistan. Crop Protection 107: 79–86.
Ahmad M and Arif ME, 2010. Resistance of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) to endosulfan, organophosphorus and pyrethroid insecticides in Pakistan. Crop Protection 29: 1428-1433.
Alexenizer M and Dorn A, 2007. Screening of medicinal and ornamental plants for insecticidal and growth regulating activity. Journal of Pesticide Science 80(4):205-215.
Altemimi A, Lakhssassi N, Baharlouei A, Watson DG and Lightfoot DA, 2017. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 42: 1-23.
Amoabeng BW, Johnson AC and Gurr GM, 2019. Natural enemy enhancement and botanical insecticide source:  a review of dual use companion plants. Applied Entomology and Zoology 54:1–19.
Cacciaa S, Di Lelioa I, La Storiaa A, Marinellia A, Varricchioa P, Franzettia E, Banyulsb N, Tettamantic G, Casartellid M, Giordanad B, Ferréb J, Gigliottie S, Ercolinia D and Pennacchioa F, 2016. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proceedings of the National Academy of Sciences 113(34): 9486–9491.
Candas M, Loseva O, Oppert B, Kosaraju P and Bulla LA, 2002. Insect Resistance to Bacillus thuringiensis. Molecular and Cellular Proteomics 2: 19-28.
Chattopadhyay P, Banerjee G and Mukherjee S, 2017. Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. Biotech 3: 1-12.
Chéraif I, Ben Jannet H, Hammami M, Khouja ML and Mighri Z. 2007. Chemical composition and antimicrobial activity of essential oils of Cupressus arizonica Greene. Biochemical Systematics and Ecology 35(12): 813-820.
Das SK, 2014. Scope and relevance of using pesticide mixtures in crop protection: a critical review. International Journal of Environmental Science and Toxicology Research 2(5): 119-123.
Desneux N, Decourtye A and Delpuech JM, 2007. The Sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology 52:81-106.
Douglas AE, 2018. Strategies for enhanced crop resistance to insect pests. Annual Review of Plant Biology 69: 637–660.
Duisembecova BA,  Dubovskiyb IM and Glupovb VV, 2017. Effect of Plant Secondary Metabolites on Susceptibility of Insects to Entomopathogenic Microorganisms. Contemporary Problems of Ecology 10: 286–292.
Ebadollahi A, 2011. Iranian plants essential oils as a source of natural insecticides agents. International Journal of Biological Chemistry 5(5): 266-290.
Farahani S, Talebi AA and Fathipour Y, 2011. Life cycle and fecundity of Spodoptera exigua (Lep.: Noctuidae) on five soybean varieties. Journal of Entomological Society of Iran 30(2): 1-12.
Gad AA and Al-Dakhil AA, 2018. Efficacy of Bacillus thuringiensis israelensis (Bti) and four plant extracts on the mortality and development of Culex quinquefasciatus Say (Diptera: Cullicidae). Egyptian Journal of Biological Pest Control 28:62: 1-5.
Greenberg SM, Sappington TW, Legaspi BC, Liu TX and Sétamou DM, 2001. Feeding and Life History of Spodoptera exigua (Lepidoptera: Noctuidae) on Different Host Plants. Annals of the Entomological Society of America 94(4): 566-575.
Hosseinzadeh A and Aramideh S, 2016. Toxicity of Bacillus thuringiensis var. kurstaki and Spinosad on three larval stages of beet armyworms Spodoptera exigua (Hübner) (Lep: Noctuidae). Journal of Entomology and Zoology Studies 4(5): 375-379.
Ishtiaq M and Saleem MA, 2011. Generating Susceptible Strain and Resistance Status of Field Populations of Spodoptera exigua (Lepidoptera: Noctuidae) Against Some Conventional and New Chemistry Insecticides in Pakistan. Journal of Economic Entomology 104(4):1343-1348.
Ishtiaq M, Saleem MA and Razaq M, 2012. Monitoring of resistance in Spodoptera exigua (Lepidoptera: Noctuidae) from four districts of the Southern Punjab, Pakistan to four conventional and six new chemistry insecticides. Crop Protection 33: 13-20.
Jafarbeigi F, Samih MA, Zarabi M and Esmaeily S, 2012. The effect of some herbal extracts and pesticides on the biological parameters of Bemisia tabaci (Genn.)(Hem.: Aleyrodidae) Pertaining to tomato grown under controlled conditions. Journal of Plant Protection Research 52(4): 375-380.
Jansen JP, Lauvaux S, Gruntowy J and Denayer J, 2017. Possible synergistic effects of fungicide-insecticide mixtures on beneficial arthropods. International Organization for Biological and Integrated Control 125: 28-35.
Kakde AM, Patel KG and Tayade S, 2014.  Role of life table in insect pest management-a review.Journal of Agriculture and Veterinary Science 7(1): 40-43.
Karasov WH and Douglas AE, 2013. Comparative Digestive Physiology. Journal of Comparative Physiology 3(2): 741–783.
Khan HA, Akram W, Shad SA and Lee JJ, 2013. Insecticide mixtures could enhance the toxicity of insecticides in a resistant dairy population of Musca domestica L. Plos One 8(4):1-8.
Keller M, Sneh B, Strizhov N, Prudovsky E, Regev A, Koncz C, Schell J and Zilberstein A, 1996. Digestion of delta-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to Cry1C. Insect Biochemistry and Molecular Biology 26: 365- 373.
Khater HF, 2012. Prospects of botanical pesticides in integrated pest management. Pharmacologia 3(12): 641-656.
Koppenhöfer AM and Kaya HK, 2000. Interactions of a nucleopolyhedrovirus with azadirachtin and imidacloprid. Journal of Invertebrate Pathology75: 84-86.
Koppenhöfer AM, Grewal PS and Kaya HK, 2000. Synergism of entomopathogenic nematodes and imidacloprid against white grubs: the mechanism. Entomologia Experimentalis et Applicata 94: 283–293.
Kortbeek RWJ, Gragt M and Bleeker PM, 2019. Endogenous plant metabolites against insects. European Journal of Plant Pathology 154:67–90.
Kumar KP, Murugana K, Kovendana K, Kumara AN, Hwangb JS and Barnard DR, 2012. Combined effect of seaweed (Sargassum wightii) and Bacillus thuringiensis var. israelensis on the coastal mosquito, Anopheles sundaicus, in Tamil Nadu, India. Science Asia 38: 141–146.
Lina EC, Dadang D, Manuwoto S and Syahbirin G, 2017. Safety and effectiveness of mixed plant extracts formulation against cabbages pests under field conditions. Journal of Biopesticide 10(1):25-34.
 López MF,  Cano-Ramírez C, Shibayama M and Zúñiga G, 2011. α-Pinene and Myrcene Induce Ultrastructural Changes in the Midgutof Dendroctonus valens (Coleoptera: Curculionidae: Scolytinae). Annals of the Entomological Society of America 104(3): 553-561.
Loseva O, Ibrahim M, Candas M, Koller CN, Bauer LS and Bulla LA Jr. 2002. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins. Insect Biochemistry and Molecular Biology 32(5):567-77.
Luna-Espino JC, Castrejón-Gómez VR, Pineda S, Figueroa JA and Martínez AM, 2018. Effect of four multiple nucleopolyhedrovirus isolates on the larval mortality and development of Spodoptera exigua (Lepidoptera: Noctuidae): determination of virus production and mean time to death. Florida Entomologist 101(2): 153-159.
Maurya P, Sharma P, Mohan L, Verma MM and Srivastava CN, 2012. Larvicidal efficacy of Ocimum basilicum extracts and its synergistic effect with neonicotinoid in the management of Anopheles stephensi. Asian Pacific Journal of Tropical Disease 2(2):110-116.
Melo AL, Soccol VT and Soccol CR, 2014. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Critical Reviews in Biotechnology 36(2):317-26.
Mhalla D, Farhat-Touzri DB, Tounsi S and Trigui M, 2018. Combinational effect of Rumex tingitanus (Polygonaceae) hexane extract and Bacillus thuringiensis δ-endotoxin against Spodoptera littoralis (Lepidoptera: Noctuidae). BioMed Research International 1-7.
Moar WJ, Osbrink WLA and Trumble JT, 1986. Potentiation of Bacillus thuringiensis var. kurstaki with Thuringiensin on beet armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology 79: 1443-1446.
Moar WJ, Pusztai-Carey M, Faassen HV, Bosch D, Frutos R, Rang C, Luo K and Adang MJ, 1995. Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Applied and Environmental Microbiology 61(6): 2086–2092.
Mohammadi D, Eivazian Kary N and Sharifi Azar Z, 2019. Effects of Cupressus arizonica extracts on some biological parameters of beet army worm Spodoptera exigua. 2nd International and 6th National Iranian Congress on Organic vs. Conventional Agriculture, Ardebil, Iran.
Nathan SS, Chung PG and Murugan K, 2005. Effect of biopesticides applied separately or together on nutritional indices of the rice leaffolder Cnaphalocrocis medinalis. Phytoparasitica33(2):187-195.
Nawaz M, Mabubu JI and Hua H, 2016. Current status and advancement of biopesticides: Microbial and botanical pesticides. Journal of Entomology and Zoology Studies 4(2): 241-246.
Nouri-Ganbalani G, Borzoui E, Abdolmaleki A, Abedi Z and Kamita SG, 2016. Individual and Combined Effects of Bacillus Thuringiensis and Azadirachtin on Plodia Interpunctella Hubner (Lepidoptera: Pyralidae). Journal of Insect Science 16(1): 95; 1–8.
Okonkwo EU, 2004. Plant materials used for controlling insect pests of stored products in Nigeria, families annonaceae, piperaceae, and rutaceae. Journal of Herbs, Spices and Medicinal Plants, 11: 47-69.
Panneerselvam C, Murugan K, Kovendan K, Kumar PM, Ponarulselvam S, Amerasan D, Subramaniam J and Hwang JS, 2013. Larvicidal efficacy of Catharanthus roseus Linn. (Family: Apocynaceae) leaf extract and bacterial insecticide Bacillus thuringiensis against Anopheles stephensi Liston. Asian Pacific Journal of Tropical Medicine 6(11):847-853.
Peyronnet O, Vachon V, Brousseau R, Baines D, Schwartz JL and Laprade R, 1997. Effect of Bacillus thuringiensis toxins on the membrane potential of lepidopteran insect midgut cells. Applied and Environmental Microbiology 63(5):1679-84.
Rajguru M, Sharma AN and Banerjee S, 2011. Assessment of plant extracts fortified with Bacillus thuringiensis (Bacillales: Bacillaceae) for management of Spodoptera litura (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science 31(1): 92–97.
Roh JY, Choi JY and Li MS, 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Journal of Microbiol Biotechnology 17:547-559.
Ruberson JR, Herzog GA, Lambert WR and Lewis WJ, 1994. Management of the beet armyworm (Lepidoptera: Noctuidae) in cotton: role of natural enemies. FloridaEntomologist77(4): 440-453.
Salama HS, Foda MS and Sharabay A, 1984. Novel biochemical avenues for enhancing Bacillus thuringiensis endotoxin potency against Spodoptera littoralis (Lep.: Noctuidae). Entomophaga 29 (2): 171-178.
Sedaghat MM, Dehkordi AS, Khanavi M, Abai MR, Mohtarami F and Vatandoost H, 2011. Chemical composition and larvicidal activity of essential oil of Cupressus arizonica E.L. Greene against malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Pharmacognosy Research 3:135-139.
Shahid MI, Arshad M, Hasan M and Aslam Khan M, 2019. Efficacy of Cry1Ac toxin from Bacillus Thuringiensis against the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control 29: 1-5.
 Shamseldean MM, Sharaby AF, Gesraha MA, Montasser SA and Ibrahim SA, 2013. Utilization of entomopathogenic nematodes combined with plant extracts and plant essential oils against grasshopper, Heteracrir littoralis. Journal of Basic and Applied Sciences Research 3(11): 289-294.
Sheikh AA, Wani MA, Bano P, Nabi SU, Bhat TA, Bhat MA and Dar MS, 2017. An overview on resistance of insect pests against Bt Crops. Journal of Entomology and Zoology Studies 5(1): 941-948.
Siegwart M, Graillot B, Blachere Lopez C, Besse S, Bardin M, Nicot PC  and Lopez-Ferber M, 2015. Resistance to bio-insecticides or how to enhance their sustainability: a review. Frontiers in Plant Science 6: 1-19.
Singh G, Rup PJ and Koul O, 2007. Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae. Bulletin of Entomological Research 97: 351-7.
Singh P, 1977. Artificial diets for insects, mites, and spiders. IFI/Plenum Data Company, Springer, New York.
Stenberg JA, 2017. A conceptual framework for integrated pest management. Trends in Plant Science 22 (9): 759-769.
Su J and Sun XX, 2014. High level of metaflumizone resistance and multiple insecticide resistance in field populations of Spodoptera exigua (Lepidoptera: Noctuidae) in Guangdong Province, China. Crop Protection 6: 58-63.
Thomas M, 1999. Ecological approaches and the development of “truly integrated” pest management. Proceedings of the National Academy of Sciences. 96: 5944 -5951.
Vilani A, Lozano ER, Potrich M, Alves LFA, Costa Maia FM, Agnol de Lima JD and Gouvea A, 2017. Activity of plant aqueous extracts on Bacillus thuringiensis and their interactions on Anticarsia gemmatalis  (Lepidoptera: Erebinae). Ciências Agrárias, Londrina, 38 (2): 1051-1058.
Waldbauer GP, 1968. The consumption and utilization of food by insects. Advances in Insect Physiology 5: 229–288.
War AR, Paulraj MG, Hussain B, Ahmad T, War MU and Ignacimuthu S, 2014. Efficacy of a combined treatment of neem oil formulation and endosulfan against Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae). International Journal of Insect Science 6(1):1-7.
Younes AA, Zohdy NZM, Abulfad HA and Fathy R, 2018. Microbial biopesticides affected age-stage life table of the tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae). Egyptian Journal of Biological Pest Control 28(10): 1-8.
Zarrad K, Laarif A, Ben Hamouda A, Chaieb I and Jemâa JMB, 2017. Anticholinesterase Potential of Monoterpenoids on the Whitefly Bemisia tabaci and Their Kinetic Studies. Journal of Agricultural Science and Technology 19: 643-652.
Zhang P, Gao M, Mu W, Zhou C and Li XH, 2014. Resistant levels of Spodoptera exigua to eight various insecticides in Shandong, China. Journal of Pesticides Science39(1): 7-13.