Abrinbana M, 2018. Variation in aggressiveness components of Zymoseptoria tritici populations in Iran. Journal of Phytopathology 166(1): 10–17.
Arraiano LS, Brown JKM, 2006. Identification of isolate‐specific, and partial resistance to septoria tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathology 55(6): 726–738.
Bae H, Roberts DP, Lim HS, Strem MD, Park SC, et al., 2011. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Molecular Plant-Microbe Interactions 24(3): 336–351.
Baghani F, Rahnama K, Aghajani MA, Dehghan A, 2012. Biological control of Fusarium head blight (Fusarium graminearum) by application of three native Trichoderma species in field. Journal of Plant Production 19(2): 123–139 (In Persian with English abstract).
Bakhshi T, Ahmadi FS, Sarbarzeh MA, Mehrabi R, Seifi A, 2023. Resistance of wheat genotypes to Mycosphaerella graminicola isolates at seedling stage under greenhouse conditions. Food Science & Nutrition 00: 1–14.
Barakat I, Chtaina N, El Kamli T, Grappin P, El Guilli M, et al., 2023. Bioactivity of Trichoderma harzianum a peptaibols against Zymoseptoria tritici causal agent of Septoria leaf blotch of wheat. Journal of Plant Protection Research 63(1): 59–67.
Baron NC, Rigobelo EC, 2022. Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology 13(1): 39–55.
Baroncelli R, Zapparata A, Piaggeschi G, Sarrocco S, Vannacci G, 2016. Draft whole-genome sequence of Trichoderma gamsii T6085, a promising biocontrol agent of Fusarium Head Blight on wheat. Genome Announcements 4(1): e01747–15.
Battache M, Lebrun MH, Sakai K, Soudière O, Cambon F, et al., 2022. Blocked at the stomatal gate, a key step of wheat Stb16q-mediated resistance to Zymoseptoria tritici. Frontiers in Plant Science 13: p.921074.
Bearchell SJ, Fraaije BA, Shaw MW, Fitt BD, 2005. Wheat archive links long-term fungal pathogen population dynamics to air pollution. Proceedings of the National Academy of Sciences 102(15): 5438–5442.
Benbow HR, Brennan C, Zhou B, Christodoulou T, Berry S, et al., 2020. Insights into the resistance of a synthetically-derived wheat to Septoria tritici blotch disease: less is more. BMC Plant Biology 20(1): 1–23.
Benítez T, Rincón AM, Limón MC, Codon AC, 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology 7(4): 249–260.
Brennan CJ, Benbow HR, Mullins E, Doohan, FM, 2019. A review of the known unknowns in the early stages of septoria tritici blotch disease of wheat. Plant Pathology 68(8): 1427–1438.
Brown JK, Chartrain L, Lasserre-Zuber P, Saintenac C, 2015. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genetics & Biology 79: 33–41.
Card SD, 2005. Biological control of Botrytis cinerea in lettuce & strawberry crops. PhD thesis, Plant Pathology, Lincoln University, New Zealand.
Chartrain L, Brading PA, Widdowson JP, Brown JKM, 2004. Partial resistance to Septoria tritici blotch (Mycosphaerella graminicola) in wheat cultivars Arina and Riband. Phytopathology 94(5): 497–504.
Collinge DB, Jensen B, Jørgensen HJ, 2022. Fungal endophytes in plants and their relationship to plant disease. Current Opinion in Microbiology 69: p.102177.
Cordo CA, Monaco CI, Segarra CI, Simon MR, Mansilla AY, et al., 2007. Trichoderma spp. as elicitors of wheat plant defense responses against Septoria tritici. Biocontrol Science & Technology 17(7): 687–698.
Cordo C, Altamirano R, Simón MR, Stocco MC, Lampugnani G, et al., 2020. Biocontrol strategies to reduce the impact of Septoria tritici blotch in wheat. Revista de la Facultad de Agronomía 119(2): p.14.
Cowger C, Mundt CC, 2002. Aggressiveness of Mycosphaerella graminicola isolates from susceptible and partially resistant wheat cultivars. Phytopathology 92(6): 624–630.
Dalvand M, Soleimani Pari MJ, Zafari D, 2018a. Evaluating the efficacy of STB resistance genes to Iranian Zymoseptoria tritici isolates. Journal of Plant Diseases & Protection 125: 27–32.
Dalvand M, Zafari D, Soleimani Pari MJ, Roohparvar R, Tabib Ghafari SM, 2018b. Studying genetic diversity in Zymoseptoria tritici, causal agent of Septoria tritici blotch, by using ISSR and SSR markers. Journal of Agricultural Science & Technology 20(6): 1307–1316.
De Silva NI, Brooks S, Lumyong S, Hyde KD, 2019. Use of endophytes as biocontrol agents. Fungal Biology Reviews 33(2): 133–148.
Dean R, Van Kan JA, Pretorius ZA, Hammond‐Kosack KE, Di Pietro A, et al., 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13(4): 414–430.
Dos Santos UR, Dos Santos JL, 2023. Trichoderma after crossing kingdoms: infections in human populations. Journal of Toxicology & Environmental Health 26(2): 97–126.
Dutta A, Croll D, McDonald BA, Barrett LG, 2021. Maintenance of variation in virulence and reproduction in populations of an agricultural plant pathogen. Evolutionary Applications 14(2): 335–347.
Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, et al., 2011. Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology 9(10): 749–759.
Eisner SA, Fiegna F, McDonald BA, Velicer GJ, 2023. Bacterial predation of a fungal wheat pathogen: prelude to experimental evolution of enhanced biocontrol agents. Plant Pathology 00:1–10.
El-Sharkawy HH, Rashad YM, Ibrahim SA, 2018. Biocontrol of stem rust disease of wheat using arbuscular mycorrhizal fungi and Trichoderma spp. Physiological & Molecular Plant Pathology 103: 84–91.
Eslahi M, Mojerlou S, 2017. Evaluation the efficiency of Falcon® fungicide to control wheat leaf blotch caused by Mycosphaerella graminicola. Research in Plant Pathology 5(2): 2.
Eyal Z, Scharen AL, Prescott JM, Ginkel M, 1987. The septoria diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico. 52 pp.
Fagundes WC, Haueisen J, Stukenbrock EH, 2020. Dissecting the biology of the fungal wheat pathogen Zymoseptoria tritici: a laboratory workflow. Current Protocols in Microbiology 59(1): e128.
Feurtey A, Lorrain C, McDonald MC, Milgate A, Solomon PS, et al., 2023. A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen. Nature Communications 14(1): 1059.
Figueroa M, Hammond‐Kosack KE, Solomon PS, 2018. A review of wheat diseases—a field perspective. Molecular Plant Pathology 19(6): 1523–1536.
Fones H, Gurr S, 2015. The impact of Septoria tritici blotch disease on wheat: an EU perspective. Fungal Genetics & Biology 79: 3–7.
Fones H, Soanes D, Gurr S, 2023. Epiphytic proliferation of Zymoseptoria tritici isolates on resistant wheat leaves. Fungal Genetics & Biology 168(2023): p.103822.
Gangwar OP, Singh AP, 2018. Trichoderma as an efficacious bioagent for combating biotic and abiotic stresses of wheat-a review. Agricultural Reviews 39(1): 48–54.
Ghaneie A, 2017. Host specificity of Zymoseptoria tritici isolates interacting with wheat and effect of Salicylic acid exogenous application on gene expression of signaling pathway in host. PhD thesis, Plant Pathology, Tarbiat Modarres University, Iran (In Persian with English abstract).
Goodwin SB, M'barek SB, Dhillon B, Wittenberg AH, Crane CF, et al., 2011. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLOS Genetics 7(6): e1002070.
Harman GE, 2000. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Disease 84(4): 377–393.
Haueisen J, Möller M, Eschenbrenner CJ, Graubert J, Seybold H, et al., 2019. Highly flexible infection programs in a specialized wheat pathogen. Ecology & Evolution 9(1): 275–294.
Hidangmayum A, Dwivedi P, 2018. Plant responses to Trichoderma spp. and their tolerance to abiotic stresses: a review. Journal of Pharmacogn Phytochem 7(1): 758–766.
Howell CR, 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease 87(1): 4–10.
Innocenti G, Roberti R, Montanari M, Zakrisson E, 2003. Efficacy of microorganisms antagonistic to Rhizoctonia cerealis and their cell wall degrading enzymatic activities. Mycological Research 107(4): 421–427.
Jaroszuk-Ściseł J, Tyśkiewicz R, Nowak A, Ozimek E, Majewska M, et al., 2019. Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. International Journal of Molecular Sciences 20(19): 4923.
Jensen DF, Mikkelsen B, Karlsson M,
Hökeberg M, 2019. Biocontrol of Septoria tritici Blotch (bca control of stb). Google Patent, WO2019125294A1. Date issued: 27 June.
Kari Dolatabad H, Javan-Nikkhah M, Shier WT, 2017. Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pistacia vera. Mycological Progress 16(8): 777–790.
Karlsson I, Friberg H, Kolseth AK, Steinberg C, Persson P, 2017. Organic farming increases richness of fungal taxa in the wheat phyllosphere. Molecular Ecology 26(13): 3424–3436.
Kema GH, Mirzadi Gohari A, Aouini L, Gibriel HA, Ware SB, et al., 2018. Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance. Nature Genetics 50(3): 75–380.
Kia S, Torabi M, 2008. Effects of infection with septoria leaf blotch (septoria tritici Rob ex Desm.) at different growth stages on yield and yield components of wheat cultivars in Gorgan. Seed & Plant Journal 24(2): 237–252.
Kia S, Rahnama K, Soltanloo H, Babaeizad V, Aghajani MA, 2018. Identification of resistance sources to septoria tritici blotch with causal agent Zymoseptoria tritici in bread wheat genotypes. Journal of Agricultural Biotechnology 10(1): 49–65.
Kiani Vafa S, Bazgir E, Darvishnia M, 2021. Biological control of wheat take-all disease using Trichoderma harzianum and T. viride. Journal of Applied Research in Plant Protection 10 (3): 93–107 (In Persian with English abstract).
Kildea S, Ransbotyn V, Khan MR, Fagan B, Leonard G, et al., 2008. Bacillus megaterium shows potential for the biocontrol of Septoria tritici blotch of wheat. Biological Control 47(1): 37–45.
Larran S, Perelló A, Simon MR, Moreno V, 2002. Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World Journal of Microbiology & Biotechnology 18(7): 683–686.
Latz MA, Jensen B, Collinge DB, Jørgensen HJ, 2018. Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecology & Diversity 11(5-6): 555–567.
Latz MA, Jensen B, Collinge DB, Jørgensen HJ, 2020. Identification of two endophytic fungi that control Septoria tritici blotch in the field, using a structured screening approach. Biological Control 141: 104128.
Lorito M, Woo SL, Harman GE, Monte E, 2010. Translational research on Trichoderma: from 'omics to the field. Annual Review of Phytopathology 48: 395–417.
Lynch KM, Zannini E, Guo J, Axel C, Arendt EK, et al., 2016. Control of Zymoseptoria tritici cause of septoria tritici blotch of wheat using antifungal Lactobacillus strains. Journal of Applied Microbiology 121(2): 485–494.
Mahboubi M, Talebi R, Sarbarzeh MA, Naji AM, Mehrabi R, 2020. Resistance and virulence variability in wheat–Zymoseptoria tritici interactions. Crop and Pasture Science 71(7): 645–652.
Mahboubi M, Talebi R, Mehrabi R, Mohammad Naji A, Maccaferri M, et al., 2022. Genetic analysis of novel resistance sources and genome-wide association mapping identified novel QTLs for resistance to Zymoseptoria tritici, the causal agent of septoria tritici blotch in wheat. Journal of Applied Genetics 63(3):429–445.
Mastouri F, Björkman T, Harman GE, 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100(11): 1213–1221.
McDonald MC, Renkin M, Spackman M, Orchard B, Croll D, et al., 2019. Rapid parallel evolution of azole fungicide resistance in Australian populations of the wheat pathogen Zymoseptoria tritici. Applied & Environmental Microbiology 85(4): e01908–18.
Medeiros HAD, Araújo Filho JVD, Freitas LGD, Castillo P, Rubio MB, et al., 2017. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Scientific Reports 7(1): 1–13.
Mejri S, Siah A, Coutte F, Magnin-Robert M, Roux B, et al., 2018. Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis. Environmental Science & Pollution Research 25(30): 29822–29833.
Mirrahimi SR, Pirnia M, Sabbagh SK, Seifati SE, Keikhah S, et al., 2022. Comparative effect of gr24 phytohormone and two fungal species alone or in combination in increasing resistance of two tomato cultivars against Fusarium wilt dises. Journal of Applied Research in Plant Protection 12 (1): 43–56 (In Persian with English abstract).
Mirzadi Gohari A, 2015. Identification and functional characterization of putative (a) virulence factors in the fungal wheat pathogen Zymoseptoria tritici. PhD thesis, Molecualar Plant Pathology, Wageningen University, Netherland.
Mojerlou S, Safaie N, Alizadeh A, Khelghatibana F, 2009. Measuring and modeling crop loss of wheat caused by septoria leaf blotch in seven cultivars and lines in Iran. Journal of Plant Protection Research 49(3): 257–262.
Naeimi S, Okhovvat SM, Javan-Nikkhah M, Vágvölgyi C, Khosravi V, et al., 2010. Biological control of Rhizoctonia solani AG1-1A, the causal agent of rice sheath blight with Trichoderma strains. Phytopathologia Mediterranea 49(3): 287–300.
Naeimi S, Kocsubé S, Antal Z, Okhovvat SM, Javan-Nikkhah M, et al., 2011. Strain-specific SCAR markers for the detection of Trichoderma harzianum AS12-2, a biological control agent against Rhizoctonia solani, the causal agent of rice sheath blight. Acta Biologica Hungarica 62(1): 73–84.
Naeimi S, Khosravi V, Nouri MZ, Hoda H, Vágvölgyi C, et al., 2019. Biological control of rice sheath blight disease with formulation of indigenous Trichoderma strains under paddy field conditions. Acta Biologica Szegediensis 63(1): 37–43.
Naeimi S, Khosravi V, Varga A, Vágvölgyi C, Kredics L, 2020. Screening of organic substrates for solid-state fermentation, viability and bioefficacy of Trichoderma harzianum AS12-2, a biocontrol strain against rice sheath blight disease. Agronomy 10(9): 1258.
Narmani A, Arzanlou M, Babaiahari A, Masteri Farahani H, 2019. Biological control of wheat Fusarium head blight using antagonistic strains of commercial and local Trichoderma, isolated from wheat plant rhizosphere. Journal of Applied Research in Plant Protection 8(2): 1–20 (In Persian with English abstract).
O’Driscoll A, Kildea S, Doohan F, Spink J, Mullins E, 2014. The wheat–septoria conflict: a new front opening up?. Trends in Plant Sscience 19(9): 602–610.
Omrani A, Roohparvar R, Shahbazi k, 2023. Reaction of wheat lines candidate for introduction as new commercial cultivars to septoria tritici blotch. Applied Entomology & Phytopathology 90(2): 195–208 (In Persian with English abstract).
Orellana-Torrejon C, Vidal T, Gazeau G, Boixel AL, Gélisse S, et al., 2022. Multiple scenarios for sexual crosses in the fungal pathogen Zymoseptoria tritici on wheat residues: potential consequences for virulence gene transmission. Fungal Genetics & Biology 163: p.103744.
Perelló A, Monaco C, Simon MR, Sisterna M, Dal Bello GS, 2003. Biocontrol efficacy of Trichoderma isolates for tan spot of wheat in Argentina. Crop Protection 22(9): 1099–1106.
Perelló AE, Moreno MV, Mónaco C, Simón MR, Cordo C, 2009. Biological control of septoria tritici blotch on wheat by Trichoderma spp. under field conditions in Argentina. BioControl 54(1): 113–122.
Persoon CH, 1794. Disposita methodica fungorum. Römer's Neues Magazin für die Botanik 1:81–128.
Ponomarenko A, Goodwin SB, Kema GHJ, 2011. Septoria tritici blotch (STB) of wheat. Plant Health Instructor: DOI:10.1094/PHI-I-2011-0407-01.
Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, et al., 2011. Zymoseptoria gen. nov.: a new genus to accommodate septoria-like species occurring on graminicolous hosts. Persoonia: Molecular Phylogeny & Evolution of Fungi 26: 57–69
Roohparvar R, Omrani A, Dehghan MA, Dalvand M, 2023. Virulence factors of Zymoseptoria tritici, the fungal pathogen of wheat septoria leaf blotch in disease hot spots during the years 2019-2021. Journal of Applied Research in Plant Protection 12(3): 257–270.
Sahebani N, Hadavi N, 2008. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biology & Biochemistry 40(8): 2016–2020.
Samain E, van Tuinen D, Jeet P, Aussenac T, Selim S, 2017. Biological control of septoria leaf blotch and growth promotion in wheat by Paenibacillus sp. strain B2 and Curtobacterium plantarum strain EDS. Biological Control 114: 87–96.
Sarrocco S, 2023. Biological disease control by beneficial (micro) organisms: selected breakthroughs in the past 50 years. Phytopathology 113(4): 732–740.
Schneider CA, Rasb WS, Eliceiri KW, 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7): 671–675.
Seybold H, Demetrowitsch .J, Hassani MA, Szymczak S, Reim E, et al., 2020. A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nature Communications 11(1): 1–12.
Shewry PR. 2009. Wheat. Journal of Experimental Botany 60(6): 1537–1553.
Shoresh M, Harman GE, Mastouri F, 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21–43.
Singh US, Zaidi NW, Joshi D, Khan T, John D, et al., 2005. Trichoderma: a microbe with multifaceted activity. Annual Review of Plant Pathology 3 (3): 33–75.
Stocco MC, Mónaco CI, Abramoff C, Lampugnani G, Salerno G, et al., 2016. Selection and characterization of Argentine isolates of Trichoderma harzianum for effective biocontrol of septoria leaf blotch of wheat. World Journal of Microbiology & Biotechnology 32(3): 49.
Stukenbrock E, Gurr S, 2023. Address the growing urgency of fungal disease in crops. Nature 617(7959): 31–34.
Tabib Ghaffary SM, Faris JD, Friesen TL, Visser RG, van der Lee, et al., 2012. New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat. Theoretical and Applied Genetics 124: 125–142.
Thambugala KM, Daranagama DA, Phillips AJ, Kannangara SD, Promputtha I, 2020. Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cellular & Infection Microbiology 10: 604923.
Tidd H, Rudd JJ, Ray RV, Bryant R, Kanyuka K, 2023. A large bioassay identifies stb resistance genes that provide broad resistance against septoria tritici blotch disease in the UK. Frontiers in Plant Science 13: p.1070986.
Vagndorf NJ, 2018. Zymoseptoria tritici–variation in host resistance and variability in the fungi. PhD thesis, Plant Breeding Aarhus University, Denmark.
Wahdan FMS, Hossen S, Tanunchai B, Schädler M, Buscot F, et al., 2020. Future climate significantly alters fungal plant pathogen dynamics during the early phase of wheat litter decomposition. Microorganisms 8(6): 908.
Woo SL, Hermosa R, Lorito M, Monte E, 2023. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nature Reviews Microbiology 21(5): 312–326.
Xue AG, Guo W, Chen Y, Siddiqui I, March G, et al., 2017. Effect of seed treatment with novel strains of Trichoderma spp. on establishment and yield of spring wheat. Crop Protection 96: 97–102.
Yadav B, Singh R. Kumar A, 2015. Management of spot blotch of wheat using Fungicides, Bio-agents and Botanicals. African Journal of Agricultural Research 10(25): 2494–2500.
Yang N, Ovenden B, Baxter B, McDonald MC, Solomon PS, et al., 2022. Multi-stage resistance to Zymoseptoria tritici revealed by GWAS in an Australian bread wheat diversity panel. Frontiers in Plant Science 13: p.990915.
Zafari D, Koushki MM, Bazgir E, 2008. Biocontrol evaluation of wheat take-all disease by Trichoderma screened isolates. African Journal of Biotechnology 7(20): 3653–3659.
Zaidi NW, Dar MH, Singh S, Singh US, 2014. Trichoderma species as abiotic stress relievers in plants. In: Biotechnology & Biology of Trichoderma. Elsevier, Poland. Pp. 515–525.
Zhang S, Gan Y, Xu B, Xue Y, 2014. The parasitic and lethal effects of Trichoderma longibrachiatum against Heterodera avenae. Biological Control 72: 1–8.