Investigation for Application of Adaptive Neuro-Fuzzy Inference System (ANFIS) and Multi Linear Regression in Predicting Seasonal Total Development Stage Population Fluctuations of the Sunn Pest, Eurygaster integriceps Puton (Hemiptera, Scutelleridae) Using Environmental Variables in Chadegan

Document Type : Research Paper

Authors

1 Graduated Ph.D. Student of Entomology, College of Agriculture, Razi University, Kermanshah, Iran.

2 Assistant Professor, Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran.

3 Associate Professor., Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran.

4 Assistant Professor, Department of Biosystem Mechanization Engineering, College of Agriculture, Razi University, Kermanshah, Iran.

Abstract

Abstract
Intelligent systems have received considerable attention as a modern modeling methods in recent years. These models is used for prediction and classification in situations where the classic statistical models are not able due to their constraints. This study is aimed to compare the ability of ANFIS and multi factor linear regression models for predicting density of all growing stages of Sunn pest. The data population fluctuation of Sunn pest in the years 2015 and 2016 on a farm with an area of one hectar in chadegan city was obtained. Predictor variables including variables sampling date, average temperature, average relative humidity, wind speed, wind direction, rainfall, height from sea level and degree- day were processed as input data to achive an output of number of developmental stages as response variable. In the ANFIS model, 70% of the data was assigned to training and 30% for validation. After network training and assessment of the best structure according to type, number of membership function and related rules with the use of MATLAB software, the appropriate model was selected based on statistical indices of, root mean square error (RMSE) and coefficient of determination (R2). After sensivity analysis the results showed that ANFIS method (RMSE= 0.051, R2= 0.97) had higher accuracy than multi linear regression (RMSE= 0.26, R2= 0.47) and better predicts the population fluctuation of Sunn pest Eurygaster integriceps.
 
 

Keywords


احمدزاده قره گویز ک، میرلطیفی س م، محمدی ک، 1389.  مقایسه سیستم‌های هوش مصنوعی (ANFIS و ANN) در تخمین میزان تبخیر تعرق گیاه مرجع در مناطق بسیار خشک ایران، نشریه آب و خاک (علوم و صنایع کشاورزی)، جلد 4، شماره 24، صفحه‌های 689- 679.
ایرانی پور ش، خرازی پاکدل ع، رجبی غ، رسولیان غ. و مجنی، ح. 1381. تلفات ویژه سنی و تغییرات سرعت نشو و نمای مراحل نابالغ سن گندم Eurygaster integriceps در چهار دمای ثابت آزمایشگاهی، مجله آفات و بیماری‌های گیاهی، جلد 2، شماره 70، صفحه­های 17-1.
کیا م، 1389. شبکه‌های عصبی در متلب، خدمات نشر کیان رایانه سبز.
معینی نقده ن. 1381. مدل پیش آگاهی روز- درجه ناحیه‌ای برای پیش بینی مراحل رشدی سن گندم در شرایط متغیر دمایی در مزرعه. رساله دکتری، دانشگاه تربیت مدرس، تهران. 90 صفحه.
Abraham A, 2005. Adaptation of fuzzy inference system using neural learning. Fuzzy Systems Engineering, 914-914.
Arkhipov M, Kruger E and Kurtener D, 2008. Evaluation of ecological conditions using bioindicators: application of fuzzy modeling. Lecture Notes in Computer Science, 491–500.
Balan B, Mohaghegh S and Ameri S, 1995. State- of- Art- in permeability determination from well log data: Part 1- A comparative study, Model development. Society of Petroleum Enginners, 17-25.
Bianconi A, Von Zuben CJ, Scrapiao ABS, and Govone J, 2009. Artificial neural networks: A novel approach to analysing the nutritional ecology of a blowfly species, Chrysomya megacephala. Journal of Insect Science, 10: 1-18.
Chon TS, Kim JM, Lee BY, Chung YJ, and Kim Y, 2000. Use of an artificial neural network to predict population dynamics of the Forest–Pest pine needle gall midge (Diptera: Cecidomyiida). Journal of Environmental Entomology, 29: 1208-1215.
Erahaghi I, Xuchai L, Mahnaz H. and Yusuf S, 1993.A robust neural network model for pattern recognition of pressure transient test data. Society petroleum engineering annual technical conference and exhibition, 3–6 October 1993. Houston, Texas.
Gardner MW, Dorling SR, 1998. Artificial neural networks (the multilayer perceptron) a review of applications in the atmospheric sciences. Atmospheric Environment. 32 (14/15): 2627–2636.
Khanna TF, 1990. Foundation of Neural Networks. New York: Addison-Wesley.
Kisi OT, Haktanir M, Ardiclioglu O, Ozturk E, Yalcin and Uludag S. 2009. Adaptive neurofuzzy computing technique for suspended sediment estimation. Advances in Engineering Software. 40: 438-444.
Lankin GO, Worner GO, Samarasinghe S and Teulon DAJ, 2001. Can artificial neural network systems be used for forecasting aphid flight patterns. New Zealand Plant Protection, 54: 188-192.
Lessio F, Mondino EB and Alma A. 2011. Spatial patterns of Scaphoideus titanus (Hemiptera: Cicadellidae): a geostatistical and neural network approach. International Journal of Pest Management, 57: 205-216.
Pedigo LP, 1994. Introduction to sampling Arthropod population. Hanbook of sampling methods for Arthropoda Agriculture, ed. P. Pedigo and G.D. Buntin. CRC Boka Raton.
Tonnangt HEZ, Nedorezov LV, Ochanda H, Owino JO and Lohr B, 2010. Host- parasitoid population density prediction using artificial neural networks: diamondback moth and its natural enemies. Agricultural and Entomology. 12: 233- 242.
Yang LN, Peng L, Zhang LM, Zhang LL and Yang SS, 2009. A prediction model for population occurrence of paddy stem borer (Scirpophaga incertulas), based on Back Propagation Artificial Neural Network and Principal Components Analysis. Computers and Electronics in Agricultur,200-206.
Zhang WJ, Liu GH and Dia, HQ, 2008. Simulation of food intake dynamics of holometabolous insect using functional link artificial neural network. Stochastic Environmental Research and Risk Assessment. 22: 123-133.
Zhang, WJ and Zhang XY, 2008. Network modeling of survival dynamics of holometabolous insects: A case study. Ecological Modelling. 211: 433-443.