Biological Control of Wheat Fusarium Head Blight Using Antagonistic Strains of Commercial and Local Trichoderma, Isolated from Wheat Plant Rhizosphere

Document Type : Research Paper

Authors

1 Researcher of Research and Innovation Center of ETKA Organization, ETKA Organization, Tehran, Iran

2 Professor of Plant Pathology and Mycology, Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

3 Director of the Knowledge Base Center of the Iranian Modern Farms Company, ETKA Organization, Tehran, Iran

Abstract

Abstract
Fusarium Head Blight (FHB) is one of the most important diseases of wheat causing considerable yield losse annually. Commonly management practices of the disease are not effective, so adopting new strategies to control are seriously needed. For this purpose, in the present study, efficiency of commercial and local Trichoderma strains was evaluated in the control of Fusarium Head Blight on wheat. For isolation of the pathogen and antagonists, samples were taken from infected wheat spicke and wheat rhizosphere, respectively. Identification of fungal isolates (Trichoderma and Fusarium isolates) was performed based on combination of morphological characteristics and molecular data. Accordingly, the identity of the 10 isolates of the pathogen and 13 isolates of the antagonists was determined as Fusarium graminearum and Trichoderma harzianum, respectively. In lab, after a preliminiary screening, a superior Trichoderma isolate from wheat rhizosphere (T. harzianum Tr5), one commercial product (T. harzianum T22) and T. longibrachiatum N(prepared from culture collection of Tabriz University,) were used to study their antagonistic activity against F. graminearum under laboratory and greenhouse conditions. Antagonistic strains were furhter assessed in the production of chitinase and protease enzymes. The results of laboratory tests showed that all fungal antagonist strains significantly inhibited the growth of the pathogen compared to control. In dual culture assay, the highest inhibitory percent was detected in the interaction of F. graminearum with T. harzianum Tr5and T. longibrachiatum N. Furthermore, only T. harzianum Tr5 was able to show mycoparasitism mechanism directly. The volatile compounds of the antagonist strains showed the lowest inhibitory against pathogen, without any significant difference between them. In non-volatile compounds assay, the highest inhibitory percentage was detected for T. longibrachiatum N and the lowest inhibitory percentage was detected for T. harzianum Tr5 and T. harzianum T22, respectively. All antagonists were able to produce chitinase and protease enzymes, with more capability for local isolates. Finally, the results of the greenhouse assay were positively in consistent with the laboratory tests. The results of greenhouse assay showed that the antagonist isolates significantly inhibited the adverse effects of the pathogen on weight loss of wheat grain.
 

Keywords


حبیبی ر، رهنما ک و تقی‌نسب م. 1394. ارزیابی کارایی گونه‌های بومی تریکودرما در تولید آنزیم‌های خارج سلولی هنگام برهمکنش با عامل بیمارگر Fusarium oxysporum.  پژوهش‌های کاربردی در گیاه‌پزشکی. جلد 4 شماره 2. صفحه‌های 73 تا 85.
قاسمی س، ارزنلو م. 1396. شناسایی ریخت‌شناختی و مولکولی گونه­های تریکودرمای اندوفیت درختان بلوط در جنگل­های ارسباران. نشریه پژوهش‌های کاربردی در گیاه‌پزشکی. جلد 6 شماره 3. صفحه‌های 53 تا 66.
موسوی س و ارزنلو م. 1394. پتانسیل بازدارندگی برخی جدایه‌های قارچ‌های آنتاگونیست روی قارچ Cercospora beticola، عامل بیماری لکه برگی سرکوسپورایی چغندرقند در شرایط آزمایشگاه و گلخانه. پژوهش‌های کاربردی در گیاه‌پزشکی. جلد 4 شماره 2. صفحه‌های 171 تا 189.
نرمانی ا، ارزنلو م و بابای اهری ا. 1397. بررسی اثر آنتاگونیستی جدایه­های درون‌زی و تجاریتریکودرما روی قارچ Phaeoacremoniumminimum، عامل بیماری نوار برگی انگور. نشریه پژوهش‌های کاربردی در گیاه‌پزشکی. جلد 7 شماره 1. صفحه‌های 151 تا 169.
Agrawal T and Kotasthane AS, 2012. Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. SpringerPlus 1: 73.
Ahamadzadeh M and Sharifi Tehrani A, 2009. Evaluation of fluorescens pseudomonas for plant growth promotion, antifungal activity against Rhizoctonia solani on common bean, and biocontrol potential. Biological Control 48: 101–107.
Arzanlou M, Khodaei S, Narmani A, Bababi-ahari A and Motallebi Azar A, 2014. Inhibitory effect of Trichoderma isolates on growth of Alternaria alternata, the causal agent of leaf spot disease on sunflower, under laboratory conditions. Archives of Phytopathology and Plant Protection 47 (13): 1592–1599.
Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T and Samuels GJ, 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia107(3): 558–590.
Davari M, Wei SH, Babai-Ahari A, Arzanlou, M, Waalwijk C, van der Lee TAJ, Zare R, Gerrits van den Ende AHG, de Hoog SG and van Diepeningen AD, 2013. Geographic differences in trichothecene chemotypes of Fusarium graminearum in the Northwest and North of Iran. World Mycotoxin Journal 6(2): 137–150.
Dennis C and Webster J, 1971. Antagonistic properties of species group of Trichoderma I, production of non-volatile antibiotics. Transactions of the British Mycological Society 57: 25–39.
Domsch KH, Gams W and Anderson TH, 2007. Compendium of soil fungi. Volume 1. Academic Press (London) Ltd..
Edington LV, Khew KL and Barron GI, 1971. Fungitoxic spectrum of benzimidazole compounds. Phytopathology 61: 42–44.
Elad Y, Chet I and Henis Y, 1982. Degradation of plant pathogenic fungi by Trichoderma harzianum. Canadian Journal of Microbiology 28:719–725.
Fokkema NJ, 1978. Fungal antagonism in the phylosphere. Annals of Applied Biology 89:115–117.
Haran S, Schikler H and Chet I, 1996. Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142: 2321–2331.
Harman GE, Howell CR, Viterbo A, Chet I and Lorito M, 2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews 2:43–56.
Hermosa R, Viterbo A, Chet I and Monte E, 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158(1):17–25.
Howell CR, 1998. The role of antibiosis in biocontrol. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol. 2. Taylor and Francis, Padstow, pp 173–184.
Hue AG, Voldeng HD, Savard ME, Fedak G, Tian X and Hsiang T, 2009. Biological control of fusarium head blight of wheat with Clonostachys rosea strain ACM941. Canadian Journal of Plant Pathology 31(2):169–179.
Ireta MJ and Gilchrist L,1994. Fusarium head scab of wheat(Fusarium graminearum Schwabe). Wheat Special Report No. 21b. Mexico, DF, CIMMYT.
Jochum CC, Osborne LE and Yuen GY, 2006. Fusarium head blight biological control with Lysobacter enzymogenes strain C3, Biological Control 39 (3): 336–344.
Kai M, Effmert U and Piechulla B, 2016. Bacterial-plant-interactions: approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Frontiers in microbiology 7:108.
Karimi K, Narmani A, Pertot I and Arzanlou M, 2019. Rapid and easy modified plate-based screening methods for quantitative and qualitative detection of protease production by Fungi. Acta Phytopathologica et Entomologica Hungarica (NOT published)
Keel C and Defago G, 1997. Interactions between beneficial soil bacteria and root pathogens: Mechanisms and ecological impact. In: Gange A.C., Brown V.K. (eds). Multitrophic Interactions in Terrestrial Systems, pp. 27–46. Blackwell Scientific Publishers, London, UK.
Keller NP, Turner G and Bennett JW, 2005. Fungal secondary metabolism from biochemistry to genomics. Nature Reviews Microbiology 3: 937–947.
Leslie JF and Summerell BA, 2006. The Fusarium Laboratory Manual. Blackwell. 388 pp.
Matarese F, Sarrocco S, Gruber S, Seidl-Seiboth V and Vannacci G. 2012. Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology158(1):98–106.
Mesterhazy A, 1995. Types and components of resistance to Fusarium head blight of wheat. Plant breeding 114 (5): 377–386.
Moller E M, BahnwegG, SandermanH and Geiger HH, 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies and infected plant tissues. Nucleic Acids Research 20: 6115-6116.
Mukherjee PK, Horwitz BA, Singh US, Mukherjee M and Schmoll M, 2013. Trichoderma: biology and applications. CABI.
O’Donnell K and Cigelnik E, 1997. Two divergent intragenomic rDNAITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7:103–116.
Parry DW, Jenkinson P and McLeod L, 1995. Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathology 44(2): 207–238.
 Papavizas GC, 1985. Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annual review of phytopathology 23(1):23–54.
Samuels GJ, Petrini O, Kuhls K, Lieckfeldt E and Kubicek CP, 1998. The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. Studies in Mycology 41: 154.
Schisler DA, Khan NI, Boehm MJ and Slininger PJ, 2002. Greenhouse and field evaluation of biological control of Fusarium head blight on durum wheat. Plant disease 86(12):1350–1356.
Stockwell CA, Bergstrom GC and Luz WD, 2001. Biological control of Fusarium head blight with Bacillus subtilis TrigoCor 1448. In Proceedings of the 2001 National Fusarium Head Blight Forum (pp. 8–10).
Suga H, Karugia GW, Ward T, Gale LR, Tomimura K, Nakajima T, Miyasaka A, Koizumi S, Kageyama K and Hyakumachi M, 2008. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98(2):159–166.
Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL and  Lorito M, 2008. Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry 40: 1–10.
Wegulo SN, Baenziger PS, Nopsa JH, Bockus WW and Hallen-Adams H, 2015. Management of Fusarium head blight of wheat and barley. Crop Protection 73:100–107.
White TJ, Bruns T, Lee SJ, Taylor JL, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods andvapplications. (pp. 315–322). New York, NY, USA: Academic Press, Inc.
Zhang H, Van der Lee T, Waalwijk C, Chen W, Xu J, Xu J, Zhang Y and Feng J, 2012. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS One 7(2), p.e31722.
Zhang YP and Nan Z, 2007. Growth and anti‐oxidative systems changes in Elymus dahuricus is affected by Neotyphodium endophyte under contrasting water availability. Journal of Agronomy and Crop Science 193(6): 377–386.