Effect of Some Fungicides on Causal Agent of Sclerotinia Stem Rot Disease of Rapeseed in Mazandaran Province.

Document Type : Research Paper

Authors

1 PhD Student Department of Plant Protection, College of Agriculture, Zabol University, Zabol, Iran.

2 Associate Professor Department of Plant Protection, College of Agriculture, Zabol University, Zabol, Iran.

3 Research Associate Professor, Department of Plant Protection, Research, Agricultural and Natural Resources Research Center of Golestan Province, Gorgan, Iran.

4 Associate Professor Respectively, Department of Plant Protection, College of Agriculture, Zabol University, Zabol, Iran.

5 Associate Professor, Department of Biology, Campus of Science, Yazd University, Yazd, Iran.

Abstract

Abstract
Stem rot caused by Sclerotinia sclerotiorum, is one of the important diseases of rapeseed, and fungicides are applied for its control. In Iran, carbendazim and tebuconazole are often used for chemical control of the disease. In order to introduce other effective fungicides against the disease, seven fungicides were studied in laboratory conditions and then six of them were applied in the field. In the laboratory conditions, different concentrations of the fungicides showed significant differences (P<0.01) with control (without fungicide) and caused inhibition of pathogen radial growth on potato dextrose agar medium except chlorothalonil (Daconil®). Effective concentration (EC50) and minimum inhibitory concentration (MIC) of the fungicides including iprodione + carbendazim (Rovral TS®), propiconazole (Tilt®), thiophanate methyle (Topsin M®), trifloxystrobin+ tebuconazole (Nativo®), tebuconazole (Folicure®) and spiroxamine+ tebuconazole+ triadimenol (Falcon®) was calculated. The EC50 values of these fungicides were 0.10, 0.11, 0.12, 0.22, 0.36 and 0.60 ppm, and MIC values were 1, 5, 1, 10, 10 and 10 ppm respectively. In the field conditions, all fungicides, had significant difference (P<0.01) with control  and decreased the rate of the disease infection and increased the crop yield about 300 to 700 Kg/ha. Nativo® was the most effective fungicide. The duration of plant protection in Nativo® treatment was longer and occurrence of disease symptoms after spraying was later than other treatments. Therefore, these fungicides can be used in rotation with common fungicides.

Keywords


حسین‌ نژاد ع، ظفری د و پاداشت‌ دهکایی ف، 1387. بررسی حساسیت جدایه‌های فوزاریوم عامل پوسیدگی طوقه برنج به قارچکش تیوفانات متیل تیرام در استان گیلان. پژوهش کشاورزی: آب، خاک و گیاه در کشاورزی، جلد 8: صفحه‌های 245 تا 256.
حمیدی س، مرادزاده اسکندری م، افضلی ح و پیرنیا م، 1394. بررسی کارآیی ترکیبات مختلف در کنترل Alternaria solaniو A. alternataعوامل بیماری لکه موجی سیب‌زمینی. پژوهش‌های کاربردی در گیاه‌پزشگی، جلد 4: صفحه‌های 57 تا 66.
دلیلی ع، افشاری آزاد ه و براری ح، 1389. بررسی تاثیر قارچ‌کشهای مختلف و زمان مصرف آنها در کنترل بیماری پوسیدگی اسکلروتینیایی ساقه کلزا. خلاصه مقالات نوزدهمین کنگره گیاهپزشکی ایران (جلد 2)، تهران، ص 835.
شیخی گرجان ع، نجفی ح، عباسی س، مرادی م، صابر ف و رشید م، 1394. راهنمای آفت کشهای ایران. انتشارات کتاب پایتخت. 412 صفحه.
صانعی ج، قدیری راد س، باقرانی ن، نوری نیا ع و رضوی س ا، 1389. آسیب شناسی کلزا. نشر پیک ریحان. 272 صفحه.
عظیمی ح، 1393. اثر کلروتالونیل و فاموکسادون + سیموکسانیل در کنترل بیماری لکه موجی گوجه فرنگی در شرایط مزرعه. پژوهش‌های کاربردی در گیاه‌پزشگی، جلد 3: صفحه‌های 35 تا 48.
عظیمی ح، جعفری ح و کربلایی خیاوی ح، 1395. اثر قارچ‌کش تریفلوکسی استروبین + تبوکونازول (ناتیو®) در کنترل بیماری لکه سیاه سیب. پژوهش‌های کاربردی در گیاه‌پزشگی، جلد 5: صفحه‌های 1 تا 15.
مهدی علمدارلو ر، آقاجانی م‌ع، مهدیان ص‌ع و براری ح، 1391. بررسی وضعیت آلودگی به بیماری پوسیدگی اسکلروتینیایی ساقه کلزا در مناطق مختلف استان مازندران. بیماری‎های گیاهی، جلد 48: صفحه‌های 237 تا 247.
Aghajani MA, Safaei N and Alizadeh A, 2013. Yield loss assessment of Sclerotinia stem rot of canola in Iran. Journal of Crop Protection 2: 229-240.
Bardin SD and Huang HC, 2001. Research on biology and control of sclerotinia disease in Canada. Canadian Journal of Plant Pathology 23: 88-89.
Bolton MD, Thomma BPHJ and Nelson BD, 2006. Sclerotinia sclerotiorum (Lib.) deBary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology 7: 1-16.
Bradley CA, Henson RA, Porter PM, LeGare DG, del Río LE and Khot SD, 2006a. Response of canola cultivars to Sclerotinia sclerotiorum in controlled and field environments. Plant Disease 90: 215-219.
Bradley CA, Lamey HA, Endres GJ, Henson RA, Hanson BK, McKay KR, HalvorsonM, LeGare DG and Porter, PM, 2006b. Efficacy of fungicides for control of Sclerotinia stem rot of canola. Plant Disease 90: 1129-1134.
Cardoso JE, Santos AA, Rossetti AG and Vidal JC, 2004. Relationship between incidence and severity of cashew gummosis in semiarid north-eastern Brazil. Plant Pathology 53: 363-367.
Dalili A, Bakhtiari S, Barari H and Aldaghi M, 2015. Effect of some fungicides against the growth inhibition ofSclerotinia sclerotiorum mycelial compatibility groups. Journal of Plant Protection Research 55: 354-361.
Duan YB, Ge CY, Liu SM, Chen CJ and Zhou MG, 2013. Effect of phenylpyrrole fungicide fludioxonil on morphological and physiological characteristics of Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology 106: 61–67.
Dueck J, Morrall RAA and McKenzie DI, 1983. Control of Sclerotitiia sclerotiorum in rapeseed with fungicides. Canadian Journal of Plant Pathology 5: 289-293.
Dutta D, Saha S, Ray D P and Bag MK, 2012. Effect of different active fungicides molecules on the management of rice blast disease. International Journal of Agriculture, Environment and Biotechnology 5: 247-251.
Gossen BD, Rimmer SR and Holley JD, 2001. First report of resistance to benomyl fungicide in Sclerotinia sclerotiorum. Plant Disease 85: 1206.
Hau FC and Beute MK, 1983. Effects of chlorothalonil on the virulence and physiology of a nontargeted pathogen, Sclerotinia minor. Phytopathology 73: 475–479.
Hegedus DD and Rimmer SR, 2005. Sclerotinia sclerotiorum: When ‘‘to be or not to be’’ a pathogen? Microbiology Letters 251: 177–184.
Huang HC, Erickson RS, Phillippe LM, Mueller CA, Sun SK and Huang JW, 2006. Control of apothecia of Sclerotinia sclerotiorum by soil amendment with S–H mixture or Perlka in bean, canola and wheat fields. Soil Biology and Biochemistry 38: 1348–1352.
Hunjan MS, Lore JS, Pannu PPS and Thind TS, 2011. Performance of some new fungicides against sheath blight and brown spot of rice. Plant Disease Research 26: 61-67.
Jamaux I, Gelie B and Lamarque C, 1995. Early stages of infection of rapeseed petals and leaves by Sclerotinia sclerotiorum revealed by scanning electron microscopy. Plant Pathology 44: 22-30
Kuang J, Hou YP, Wang JX and Zhou MG, 2011. Sensitivity of Sclerotinia sclerotiorum to fludioxonil: in vitro determination of baseline sensitivity and resistance risk. Crop Protection 30: 876–882.
Lehner MS, Paula J´unior TJ, Silva RA, Vieira RF, Carneiro JES, Schnabel G and Mizubuti ESG, 2015. Fungicide sensitivity of Sclerotinia sclerotiorum: A thorough assessment using discriminatory dose, EC50, high-resolution melting analysis, and description of new point mutation associated with thiophanate-methyl resistance. Plant Disease 99: 1537-1543.
Liu X, Yin YN, Yan LY, Michailides TJ and Ma NH, 2009. Sensitivity to iprodione and boscalid of Sclerotinia sclerotiorum isolates collected from rapeseed in China. Pesticide Biochemistry and Physiology 95: 106–112.
Ma HX, Chen Y, Wang JX, Yu WY, Tang ZH, Chen CJ and Zhou MG, 2009. Activity of carbendazim, dimethachlon, iprodione, procymidone and boscalid against Sclerotinia stem rot in Jiangsu Province of China. Phytoparasitica 37: 421-429.
Matheron ME and Porchas M, 2004. Activity of boscalid, fenhexamid, fluazinam, fludioxonil, and vinclozolin on growth of Sclerotinia minor and S. sclerotiorum and development of lettuce drop. Plant Disease 88: 665-668.
Mehdi Alamdarlou R, Zaman Mirabadi A, Esmaailifar A and Foroozan K, 2009. Study on the effect of number of spraying with fungicides on rapeseed sclerotinia stem rot control. 17th APPS CONGERESS, P.226
Morrall RAA and Dueck J, 1982. Epidemiology of sclerotinia stem rot of rapeseed in Saskatchewan. Canadian Journal of Plant Pathology 4: 161–168.
Mueller DS, Dorrance AE, Derksen RC, Ozkan E, Kurle JE, Grau CR, Gaska JM, Hartman GL, Bradley CA and Pedersen WL, 2002. Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of Sclerotinia stem rot on soybean. Plant Disease 86: 26-31.
Porter DM, 1980. Increased severity of Sclerotinia blight in peanuts treated with captafol and chlorothalonil. Plant Disease 64: 394–395.
Porter DM and Lankow RK, 1981. Growth of Sclerotinia minor on media containing chlorothalonil and benomil. Plant Disease 65:591-594.
Porter, DM and Phipps PM, 1985. Effects of three fungicides on mycelial growth, sclerotium production, and development of fungicide-tolerant isolates of Sclerotinia minor. Plant Disease 69:143-146.
Purdy LH, 1958. Some factors affecting penetration and infection by Sclerotinia sclerotiorum. Phytopathology 48: 605-609.
Reis EM, Zanatta M, Carmona M and Menten JOM, 2015. Relationship between IC50 determined in vitro/in vivo and the fungicide rate used in the field. Summa Phytopathologica41(1): 49-53.
Saharan GS and Mehta N, 2008. Sclerotinia disease of crop plants: Biology, ecology and disease management. Springer Science+Business Media B.V. 531pp.
Sharma P, Meena PD, Verma PR, Saharan GS, Mehta N, Singh D and Kumar A, 2015. Sclerotinia sclerotiorum (Lib.) de Bary causing Sclerotinia rot in oilseed Brassicas: A Review Journal of Oilseed Brassica6: 1-44.
Smith DL, Garrison MC, Hollowell JE, Isleib TG and Shew BB, 2008. Evaluation of application timing and efficacy of the fungicides fluazinam and boscalid for control of Sclerotinia blight of peanut. Crop Protection 27: 823–833.
Steadman JR, 1979. Control of plant diseases caused by Sclerotinia species. Phytopathology 69: 904-907.
Thomson JR, Thomas PM and Evans JR, 1984. Efficacy of aerial application of benomyl and iprodione for the control of sclerotinia stem rot of canola (rapeseed) in central Alberta. Canadian Journal of Plant Pathology 6: 75–77.
Wang Y, Hou YP, Chen CJ and Zhou MG, 2014. Detection of resistance in Sclerotinia sclerotiorum to carbendazim and dimethachlon in Jiangsu Province of China. Australasian Plant Pathology 43: 307–312.
Xu C, Hou Y, Wang J, Yang G, Liang X. and Zhou M, 2014. Activity of a novel strobilurin fungicide benzothiostrobin against Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology 115: 32–38.