Effectiveness of Resistance Genes to Septoria tritici Blotch (Stb) in Differential Cultivares of Wheat against Zymoseptoria tritici Isolates

Document Type : Research Paper

Authors

1 Ph.D. Student of Plant Pathology, Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan-Iran,

2 Associate Professors, Department of Plant Breeding & Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan-Iran,

3 Associate Professor, Department of Plant Protection, Faculty of Crop Sciences, University of Agricultural Sciences & Natural Resources, Sari-Iran

4 Research Associate Professor, Division of Plant Protection Research, Golestan Agricultural and Natural Resources Research and Education Center. Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.

Abstract

Abstract
Septoria leaf blotch (STB) disease, caused by Zymoseptoria tritici, is one of the most important diseases of wheat in all over the world and Iran. Genetic resistance is the most important and economical strategy to control this disease. Continuous monitoring of the fungus populations is indispensable to study the efficiency of Stb resistant genes. In this study, virulence pattern of five different isolates on differential cultivars of wheat with resistance genes and the effectiveness of these genes against isolates were studied at seedling stage under greenhouse conditions. The results showed that BK94 and BK56 were the most and the least virulent isolates on differential cultivars, respectively. M3 and Arina were resistant to all isolates. TE9111, Riband and Flame were resistant to three, two and two isolates, respectively. The other differential cultivars were susceptible against the tested isolates. Among the Stb genes, Stb15, Stb16 and Stb17 were the most effective resistance genes to all isolates, therefore they can be used as resistance sources to STB in breeding programs in Iran.
 

Keywords


دادرضایی س ط، میناسیان  و، ترابی م و لطفعلی آینه  غ، 1381.  اثر آلودگی ناشی از Septoria tritici درمراحل  مختلف رشد برعملکرد واجزاء عملکرد سه رقم گندم نان. نهال وبذر، جلد 19، شماره 1. صفحه های 101 تا 116.
کیا  ش و ترابی م، 1387. تاثیر آلودگی به سپتوریوز برگ در مراحل مختلف رشد بر عملکرد و اجزای عملکرد ارقام گندم در گرگان. نهال و بذر، جلد 24. صفحه­ های 237  تا 250.
مازندرانی ف ت، مهرابی ر و ملکی م، 1393. اثر بخشی ژن­های مقاومت به لکه برگی سپتوریایی گندم (Stb) در برابر جدایه های  Mycosphaerella graminicola استان فارس. مجله به نژادی نهال و بذر، جلد 1-30، شماره 3. صفحه های 669 تا 682.
Abrinbana M,  Mozafari J,  Shams-bakhsh  M  and Mehrabi  R, 2010. Genetic structure   of Mycosphaerella graminicola populations in Iran. Plant Pathol 59:829 – 838.
Abrinbana M, Mozafari J, Shamsbakhsh M and Mehrabi R, 2012. Resistance spectra of wheat genotypes and virulence patterns of Mycosphaerella graminicola isolates in Iran. Euphytica 186: 75-90.
Adhikari  TB,  Anderson  JM  and  Goodwin  SB,  2003. Identification  and molecular  mapping  of  a  gene  in  wheat  conferring  resistance  to  Mycosphaerella  graminicola. Phytopathology 93: 1158-1164.
Arraiano LS and  Brown JKM, 2006. Identification of isolate-specific and  partial  resistance  to  Septoria  tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathology 55, 726 – 738.
Arraiano LS, Chartrain L, Bossolini E, Slatter HN, Keller B and Brown JKM,  2007. A gene in  European  wheat  cultivars  for  resistance  to  an  African isolate of Mycosphaerella graminicola. Plant Pathology 56: 73-78.
Brading PA, Verstappen ECP, Kema GHJ and  Brown JKM, 2002. A gene-for-gene  relationship  between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology 92: 439 – 445.
Chartrain L, Brading PA, Makepeace JC and Brown JKM, 2004. Sources of resistance to Septoria tritici blotch and implications for wheat breeding. Plant Pathol 53:454 – 460.
Chartrain L, Joaquim P, Berry ST, Arraiano LS, Azanza F and Brown JKM,  2005b.  Genetics  of  resistance  to  Septoria  tritici  blotch  in  the  Portuguese wheat breeding line TE 9111. Theoritical and Applied Genetics 110: 1138-1144.
Chungu C, Gilbert  J and Townley SF, 2001. Septoria tritici blotch development as affected by temperature, duration of leaf wetness, inoculum concentration, and host. Plant Dis 85:430 – 435.
Cowger C,  Hoffer MJL  and  Mundt CC, 2000.  Specific  adaptation  by Mycosphaerella graminicola to a resistant wheat cultivar. Plant Pathology 49: 445-451.
Czembor PC, Radecka-Janusik M and  Mańkowski D, 2011. Virulence  spectrum  of  Mycosphaerella  graminicola  isolates  on  wheat  genotypes  carrying  known  resistance  genes  to  Septoria  tritici  blotch.  Journal of  Phytopathology  159: 146-154.
Duncan  KE and Howard  RJ, 2000. Cytological analysis of wheat infection by the leaf blotch pathogen Mycosphaerella graminicola. Mycol. Res 104:1074-1082.
Duveiller E, Singh RP and Nicol  JM, 2007. The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 157:417 – 430.
Eyal Z, 1999. The Septoria tritici and Stagonospora nodorum blotch diseases of wheat. Eur J Plant Pathol 105:629 – 641.
Eyal Z, Scharen AL, Prescott JM and Van Ginkel M, 1987. The Septoria Disease of Wheat . Concepts and Methods of Disease Management. Mexico, D. F. CIMMYT 52 p.
Fraaije  BA, Cools HJ, Kim SH, Motteram J, Clark WS and  Lucas JA, 2007. A novel substitution I381  V  in  the  sterol  14  alpha-demethylase  (CYP51)  of  Mycosphaerella  graminicola  is differentially selected by azole fungicides. Mol Plant Pathol 8:245 – 254.
Fraaije  BA, Lucas  JA, Clark WS and  Burnett, FJ, 2003. QoI resistance development in populations of cereal pathogens in the UK. Farnham: British Crop Protection Council.
Hosseinnezhad A, Khodarahmi M, Rezaee S, Mehrabi R and Roohparvar  R,  2014. Effectiveness determination of wheat genotypes  and Stb resistance genes against Iranian Mycosphaerella graminicola isolates. Arch Phytopathol Plant Prot 47:2051–2069
Kema CHJ, Verstappen ECP and  Waalwijk G,  2000. A virulence  in  the  wheat  Septoria  tritici  leaf  blotch fungus  Mycosphaerella graminicola is controlled by a single locus. Molecular Plant-Microbe Interactions 13: 1375 – 1379.
Kema GHJ, Annone  JG,  Sayoud  R, Van Silfhout CH, Van Ginkel M and  De Bree  J, 1996. Genetic  variation for virulence and resistance in the wheat- Mycosphaerella graminicola pathosystem. I. Interactions between pathogen, isolates and host cultivars. Phytopathology 86:200 – 212.
Kema GHJ, Yu D, Rijkenberg FHJ, Shaw MW and Baayen RP, 1996. Histology of the pathogenesis of Mycosphaerella graminicola in wheat. Phytopathology 86:777-786.
Leroux P, Albertini C, Gautier  A, Gredt M  and  Walker  AS, 2007. Mutations  in the  CYP51 gene correlated  with  changes  in  sensitivity  to  sterol  14  alpha-demethylation  inhibitors  in field isolates of Mycosphaerella graminicola. Pest Manage Sci 63:688 – 698.
Mehrabi R, Makhdoomi A and Aghaie MJ, 2015. Identification of New Sources of Resistance to Septoria tritici blotch caused by Zymoseptoria tritici. Journal of Phytopathology 163: 84–90.
Moldovan V, Moldovan M and Kadar R, 2005. Assesment of winter wheat cultivars for resistance to Fusarium heat blight. Annual Wheat New letter 51: 97-98.
Palmer CL and Skinner W, 2002. Mycosphaerella graminicola: latent infection, crop devastation and genomics. Molecular Plant Pathology 3: 63-70.
Quaedvlieg  W,  Kema  GHJ, Groenewald  JZ,  Verkley   GJM,  Seifbarghi  S,  Razavi  M, Mirzadi Gohari  A,  Mehrabi R and Crous PW,  2011. Zymoseptoria gen. nov.: a new genus to accommodate  Septoria-like species occurring on graminicolous hosts. Persoonia 26: 57–69.
Simón  MR,  Cordo  CA,  Castillo NS,  Struik  PC and  Börner  A,  2012.  Population  Structure  of Mycosphaerella  graminicola  and  location  of  genes  for  resistance  to  the  pathogen:  recent advances in Argentina. Int J Agron 2012:1 – 7.
Stukenbrock EH, Banke S, Javan-Nikkhah M and McDonald BA, 2007. Origin and domestication of the fungal wheat pathogen Mycosphaerella graminicola via sympatric speciation. Mol Biol Evol 24:398 – 411.
Tabib Ghaffary SM, Faris JD, Friesen TL, Visser RG, van der Lee TA, Robert O and Kema GH, 2012. New broad-spectrum resistance to Septoria tritici blotch derived from synthetic hexaploid wheat. Theorytical and Applied Genetics 124: 125-142.
Villegas-Fernandez  AM, Sillero JC and Rubiales D,  2011. Screening faba bean for chocolate spot resistance: evaluation methods and effects of age of host tissue and temperature. European Journal of Plant Pathology 132: 443-453.

Wiese MV, 1991. Compendium of wheat diseases. 2nd ed. APS Press, Minnesota, USA.112pp

Zhang  X, Haley SD and Jin Y,  1999. Diallel Analysis of Septoria tritici blotch Resistance in Winter Wheat. Pp. 56–58. In: van Ginkel M, McNab A and Krupinsky J, (eds.), Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research. CIMMYT, Mexico D.F.