فعالیت ضد قارچی اسموتین توتون بیان شده در Escherichia coli علیه برخی قارچ های بیماریزای گیاهی

Document Type : Research Paper

Authors

Department of Plant Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.

Abstract

هدف از این تحقیق ارزیابی فعالیت ضد قارچی اسموتین در برابر چندین بیمارگر قارچی مهم گیاهی شامل می ­شد. به منظور انجام این مطالعه، ژن اسموتین از گیاه تنباکو (Nicotiana tabacum)  در باکتری(Rosetta DE3)  Escherichia coli   همسانه ­سازی و بیان گردید. به منظور بهینه‌سازی شرایط بیان پروتئین، از آزمون تاگوچی استفاده شد. آزمون وسترن بلات بیان پروتئین نوترکیب را مورد تأیید قرار داد. بررسی‌ها نشان داد پروتئین نوترکیب بیان شده عمدتاً به شکل نامحلول اینکلوژن بادی در سلول انباشته می‌شود؛ لذا پس از محلول ساختن این توده‌ها با کمک مواد احیا کننده شرایط ایجاد ساختمان طبیعی تأمین شد. اثر اسموتین نوترکیب بر قارچ‌های Rhizoctonia solani، Botrytis cinerea، Sclerotinia sclerotiorum، Fusarium oxysporum، Verticillium dahleae و Alternaria brassicola مورد بررسی قرار گرفته و فعالیت پروتئین خالص شده از طریق سه آزمون ضدقارچی متفاوت Radial Diffusion، Disk Diffusion و Spore Germination ارزیابی و مشاهده شد که این پروتئین رشد قارچ‌های فوق را مهار می‌کند. همچنین آزمون همولیتیک خونی نشان داد که این پروتئین برای سلول‌های پستانداران فاقد سمیت می ­باشد. یافته‌های فوق نشان‌ می ­دهد که ژن اسموتین گیاه تنباکو دارای توانایی قابل توجهی در مهار رشد قارچ های بیماریزا گیاهی می ­باشد. همچنین این ژن می­ تواند درتولید گیاهان تراریخته مقاوم به  قارچ‌های بیماریزا مورد استفاده قرار گیرد.

Keywords


Abad LR, D’Urzo MP, Liu D, Narasimhan ML, Reuveni M, et al., 1996. Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Science 118(1): 11–23.
Annon A, Rathore K, Crosby K, 2014. Overexpression of a tobacco osmotin gene in carrot (Daucus carota L.) enhances drought tolerance. In Vitro Cellular & Developmental Biology – Plant 50(3): 299–306.
Bashir MA, Silvestri C, Ahmad T, Hafiz IA, Abbasi NA, et al., 2020. Osmotin: A cationic protein leads to improve biotic and abiotic stress tolerance in plants. Plants 9(8): 992.
De Beer A, Vivier MA, 2011. Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes. BMC Research Notes 4(1): 459.   
Bol JF, Linthorst HJM, Cornelissen BJC, 1990. Plant pathogenesis-related proteins induced by virus infection. Annual Review of Phytopathology 28(1): 113–138.
Brogue K, Chet I, Holliday M, Cressman R, Biddle P, et al., 1991. Transgenic plants with enhanced resistance to the fungal pathogen rhizoctonia solani. Science 254(5035): 1194–1197.
Chen JC, Lu HC, Chen CE, Hsu HF, Chen HH, et al., 2013. The NPR1 ortholog PhaNPR1 is required for the induction of PhaPR1 in Phalaenopsis aphrodite. Botanical Studies 54(1): 31.
Gianotti A, Rios WM, Soarescosta A, Nogaroto V, Carmona  AK, et al.,  2006. Recombinant expression, purification, and functional analysis of two novel cystatins from sugarcane (Saccharumo Ycinarum). Protein Expression & Purification 47: 483–489.
Gustafsson C, Govindarajan S, Minshull J, 2004. Codon bias and heterologous protein expression. Trends in Biotechnology 22(7): 346–353.
Hu X, Reddy ASN, 1997. Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein. Plant Molecular Biology 34(6): 949–959.
Kirubakaran S, Begum SM, Ulaganathan K, Sakthivel N, 2008. Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiology &Biochemistry 46(10): 918–927.
Sambrook ­J, Russell DW, 2001. Molecular Cloning: A Laboratory Manual. 3rd edition, Vol. 1, Cold Spring Harbor Laboratory Press, New York.
Kumar SA, Kumari PH, Jawahar G, Prashanth S, Suravajhala P, et al., 2016. Beyond just being foot soldiers-osmotin like protein (OLP) and chitinase (Chi11) genes act as sentinels to confront salt, drought, and fungal stress tolerance in tomato. Environmental & Experimental Botany 132: 53–65.
Larosa PC, Chen Z, Nelson DE, Singh NK, Hasegawa PM, et al., 1992. Osmotin gene expression is posttranscriptionally regulated. Plant Physiology 100: 409–15.
Larentis AL, Nicolau JFMQ, Esteves GS, Vareschini DT, Almeida FVR, et al., 2014. Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of a leptospiral protein in E. coli using shaking flasks and microbioreactor. BMC Research Notes 7(1): 671.
Liu D, Raghothama KG, Hasegawa PM, Bressan RA, 1994. Osmotin overexpression in potato delays development of disease symptoms. Proceedings of the National Academy of Sciences 91(5): 1888–1892.
Low KO, Jonet Mohd A, Ismail NF, Illias RMd, 2012.Optimization of a Bacillus sp signal peptide for improved recombinant protein secretion and cell viability in Escherichia coli. Bioengineered 3(6): 334–338.
Machuca MA, Roujeinikova A, 2017. Method for efficient refolding and purification of hemoreceptor ligand binding domain. Journal of Visualized Experiments 12(130): 57092.
Makrides sc, 1996. Strategies for achieving high-level
expression of genes in Escherichia coli. Microbiological Review, 60(3): 512–538.
Melchers LS, Sela-Buurlage MB, Vloemans SA, Woloshuk CP, Van Roekel JS, et al., 1993. Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and beta-1,3-glucanase in transgenic plants. Plant Molecular Biology 21(4): 583–593.
Newton SS, Duman JG, 2000. An osmotin-like cryoprotective protein from the bittersweet nightshade Solanum dulcamara. Plant Molecular Biology 44(5): 581–589.
Nweze EI, Mukherjee PK, Ghannoum MA, 2010. Agar-based disk diffusion assay for susceptibility testing of dermatophytes. Journal of Clinical Microbiology 48(10): 3750–3752.
Olli S, Kirti PB, 2006. Cloning, characterization and antifungal activity of defensin Tfgd1 from Trigonella foenum-graecum L. Journal of Biochemistry & Molecular Biology 39(3): 278–283.
Pain RH, 1994. Mechanisms of Protein Folding. 1st edition ed. Oxford, New York.
Papaneophytou CP, Kontopidis G, 2014. Statistical approaches to maximize recombinant protein expression in Escherichia coli: A general review. Protein Expression & Purification 94: 22–32.
Raghothama KG, Maggio A, Narasimhan ML, Kononowicz AK, wang G, et al., 1997. Tissue-specific activation of the osmotin gene by ABA, C2H4 and NaCl involves the same promoter region. Plant Molecular Biology 34: 393–402.
Sato F, Koiwa H, Sakai Y, Kato N, Yamada Y, 1995. Synthesis and secretion of tobacco neutral PR-5 protein by transgenic tobacco and yeast. Biochemical and Biophysical Research Communications 211(3): 909–913.
Selitrennikoff CP, 2001. Antifungal Proteins. Applied & Environmental Microbiology 67(7): 2883–2894.
Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, et al., 1987. Characterization of osmotin 1: a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiology 85(2): 529–536.
Stintzi A, Heitz T, Kauffmann S, Legrand M, Fritig B, 1991. Identification of a basic pathogenesis-related, thaumatin-like protein of virus-infected tobacco as osmotin. Physiological & Molecular Plant Pathology 38(2): 137–146.
Subramanyam K, Sailaja K, Subramanyam K, Rao DM, Akshmidevi K, 2011. Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell, Tissue & Organ Culture 105: 181–192.
Sundar AR, Velazhahan R, Vidhyasekaran P, 2002. A glycoprotein elicitor isolated from Colletotrichum falcatum induces defense mechanisms in sugarcane leaves and suspension-cultured cells.  Journal of Plant Diseases & Protection 109(6): 601–611.
Theis T, Stahl U, 2004. Antifungal proteins: targets, mechanisms and prospective applications. Cellular and Molecular Life Sciences 61(4): 437–455.
Tzou YM, Huang TS, Huggins KW, Chin BA, Simonne AH, et al., 2011. Expression of truncated tobacco osmotin in Escherichia coli: purification and antifungal activity. Biotechnology Letters 33(3): 539–543.
Vigers AJ, Wiedemann S, Roberts WK, Legrand M, Selitrennikoff CP, et al., 1992. Thaumatin-like pathogenesis-related proteins are antifungal. Plant Science 83(2): 155–161. 
Wang Y, Kausch AP, Chandlee JM, Luo H, Ruemmele BA, et al., 2003. Co-transfer and expression of chitinase, glucanase, and bar genes in creeping bentgrass for conferring fungal disease resistance. Plant Science 165(3): 497–506.     
Weber R LM, Wiebke-Strohm B, Bredemeier C, Margis-Pinheiro M, Brito GG, et al.,  2014. Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean. BMC Plant Biology 14: 343–356.
Woloshuk CP, Meulenhoff  JS, Sela-Buurlage M, van den Elzen PJ, Cornelissen BJ, 1991. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. The Plant Cell 3(6): 619–628.
Xu Y, Zhang K, Reghu S, Lin Y, Chan-Park MB, et al., 2019. Synthesis of antibacterial glycosylated polycaprolactones bearing imidazoliums with reduced hemolytic activity. Biomacromolecules 20(2): 949–958.
Zandvakili N, Zamani MR, Motallebi M, Moghaddassi Jahromi Z, 2017. Cloning, overexpression and in vitro antifungal activity of  Zea Mays PR10 protein. Iranian Journal of Biotechnology 15(1): 42–9.
Zebardast F, Zamani MR, Motallebi M, Moghaddassi Jahromi Z, 2015. Antifungal activity of recombinant rice LTP2 on some phytopathogenic fungi. Progress in Biological Sciences 5(1): 133–42.
Ziaei M, Motallebi M, Zamani MR, Zarin Panjeh N,  Moghaddassi Jahromi Z, 2016. A comparative study of transgenic canola (Brassica napus L.) harboring either chimeric or native Chit42 genes against phytopathogenic fungi. Journal of Plant Biochemistry & Biotechnology 25(4): 358–366.