واکنش تابعی لاروهای بالتوری سبز، Chrysoperla carnea نسبت به دو گونه از شته های آفت مرکبات: شته سبز مرکبات Aphis spiraecola و شته جالیز Aphis gossypii

Document Type : Research Paper

Authors

1 Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil

2 University of Mohaghegh Ardabili

Abstract

بالتوری سبز Chrysoperla carnea  نقش مهمی در کنترل بیولوژیک گونه­ های مختلف شته­ ها دارد. در این تحقیق، واکنش تابعی لاروهای سنین دوم و سوم C. carnea نسبت به شته سبز مرکبات، Aphis spiraecola  و شته جالیز،A. gossypii  مورد بررسی قرار گرفت. آزمایش ­ها روی برگ­های پرتقال (رقم تامسون ناول) در اتاقک رشد در دمای 2 ± 27 درجه سلسیوس، رطوبت نسبی 5 ± 65 درصد و دوره­ نوری 16 ساعت روشنایی و هشت ساعت تاریکی انجام شد. تراکم ­های مختلفی از طعمه­ ها در اختیار شکارگرها قرار داده شد. تعداد طعمه ­های خورده شده بعد از 24 ساعت محاسبه و ثبت شد. بر اساس نتایج تجزیه رگرسیون لجستیک، هر دو سن لاروی شکارگر واکنش تابعی نوع دوم را نسبت به هر دو گونه­ شته نشان دادند. با افزایش سن لاروی شکارگر، نرخ حمله­ (a) آن نسبت به A. spiraecola به طور معنی­ داری افزایش و زمان دستیابی (Th) آن کاهش یافت. نرخ حمله لارو سن دوم شکارگر روی A. gossypii به طور معنی ­داری بیشتر از مقدار متناظر روی A. spiraecola بود. همچنین زمان دستیابی لارو سن سوم شکارگر در تغذیه از A. gossypii در مقایسه با A. spiraecola به طور معنی ­داری کمتر و نرخ حمله­ آن بیشتر بود. نتایج این تحقیق نشان داد که لاروهای بالتوری سبز به ویژه سن سوم آن، از توانایی خوبی برای کنترل این شته­ ها برخوردار هستند. با این حال، برای برآورد جامعی از توانایی ­های کنترل بیولوژیک C. carnea نسبت به این دو گونه شته روی مرکبات، باید آزمایش­ های بیشتری در شرایط صحرایی انجام گیرد. 

Keywords


Aghajanzadeh S, Rassoulian Gh, Rezvani N, Esmaili M, 1997. Study of faunistic aspects of citrus aphids in western Mazandaran. Applied Entomology and Phytopathology 65: 62–78.   
Ail-Catzim CE, Rodriguez-Gonzalez RE, Hernandez-Juarez A, Chacon-Hernandez JC, 2019. Functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) on Myzus persicae nymphs (Hemiptera: Aphididae). Proceedings of the Entomological Society of Washington 121 (4): 535–543.                                                                                                                                             
Atlihan R, Kaydan B, Ozgokce MS, 2004. Feeding activity and life history characteristics of the generalist predator, Chrysoperla carnea (Neuroptera: Chrysopidae) of different prey densities. Journal of Pest Science 77: 17–21.     
Atlihan R, Guldal H, 2009. Prey density-dependent feeding activity and life history of Scymnus subvillosus Goeze (Coleoptera: Coccinellidae). Phytoparasitica 37: 35–41.                                                                                                                  
Bayoumy MH, Awadalla HS, 2018. Foraging responses of Coccinella septempunctata, Hippodamia variegata and Chrysoperla carnea to changing in density of two aphid species. Biocontrol Science and Technology 28: 226–241.       
Blackman RL, Eastop VF, 2000. Aphids on the world´s crops: An identification and information guide. Wiley, London, United Kingdom. 476 pp.                                                                                                              
Blackman RL, Eastop VF, 2007. Taxonomic issues. In: Aphids as Crop Pests, van Emden HF, Harrington R (eds.).  CAB International, London, Pp. 1–29.                                             
Brooks SJ, Barnard PC, 1990. The green lacewing of the world: A generic review (Neuroptera: Chrysopidae). Bulletin of British Museum (Natural History), Entomology Series 59 (2): 117–286.
Butler CD, O' Neil RJ, 2008. Voracity and prey preference of insidious flower bug (Hemiptera: Anthocoridae) for immature stages of soybean aphid (Hemiptera: Aphididae) and soybean thrips (Thysanoptera: Thripidae). Environmental Entomology 37: 964–972.
Chakraborty D, Korat DM, 2010. Feeding efficiency of green lacewing, Chrysoperla carnea (Stephens) on different species of aphids. Karnataka Journal of Agricultural Sciences 23:793–794.
Charnov EL, 1976. Optimal foraging, the marginal value theorem. Theoretical Population Biology 9: 129–136.              
Canard M, Principi MM, 1984. Development of Chrysopidae. In: Biology of Chrysopidae, Canard M, Semeria Y, New TR (eds.). Dr W. Junk Publishers, The Hague, Netherlands. Pp. 57–75.
Carrilo M, Elanov P, 2004. The Potential of Chrysoperla carnea as a biological control agent of Myzus persicae in glass houses. Annals of Applied Biology 32: 433–439. 
Curry GL, Feldman RM, 1979. Stochastic predation model with depletion. Canadian Entomologist 111: 465–470.
Fantinou AA, Perdikis DC, Labropoulos PD, Maselou DA, 2009. Preference and consumption of Macrolophus pygmaeus preying on mixed instar assemblages of Myzus persicae. Biological Control 51: 76–80.
Fantinou AA, Baxevani A, Drizou F, Labropoulos P, Perdikis D, et al., 2012. Consumption rate, functional response and preference of the predaceous mite Iphiseius degenerans to Tetranychus urticae and Eutetranychus orientalis. Experimental and Applied Acarology 58:133–144.
Farahi S, Sadeghi H, Whittington AE, 2009. Lacewings (Neuroptera: Chrysopidae and Hemerobiidae) from north eastern and east provinces of Iran. Munis Entomology and Zoology 4: 501–509.
Fathipour Y, Karimi M, Farazmand A, Talebi AA, 2018. Age-specific functional response and predation capacity of Phytoseiulus persimilis (Phytoseiidae) on the two-spotted spider mite. Acarologia 58: 31–40.
Garzo E, Soria C, Gomaz-Guillamon ML, Fereres A, 2002. Feeding behavior of Aphis gossypii on resistant accessions of different melon genotypes (Cucumis melo). Phytoparasitica 30: 129–140. 
Hassanpour M, Mohaghegh J, Iranipour Sh, Nouri Ganbalani G, Enkegaard A, 2011. Functional response of Chrysoperla carnea (Neuropetra: Chrysopidae) to Helicoverpa armigera (Lepidoptera: Noctuidae): effect of prey and predator stages. Insect Science 18: 217–224. 
Hassanpour M, Maghami R, Rafiee-Dastjerdi H, Golizadeh A, Yazdanian M, et al., 2015. Predation activity of Chrysoperla carnea (Neuroptera: Chrysopidae) upon Aphis fabae (Hemiptera: Aphididae): Effect of different hunger levels. Journal of Asia-Pacific Entomology 18: 297–302.   
Hassanpour M, Asadi M, Jooyandeh A, Madadi H. 2021. Lacewings: research and applied aspects. In: Karimi J, Madadi H (eds). Biological Control of Insect and Mite Pests in Iran. Springer, Switzerland. Pp. 175–194.                                                                                                                          
Hassell M, 1978. The dynamics of arthropod predator prey system. Princeton University Press, New Jersey, USA. 237 pp.
Hassell M, 1982. Patterns of parasitism by insect parasites in patchy environments. Ecological Entomology 7: 365–377.
Holling CS, 1959. Some characteristics of simple types of predation and parasitism. Canadian Entomologist 91: 385–398.                                                                                                          
Holling CS, 1965. The Functional response of predators to prey density and its role in mimicry and population regulation.  The Memoirs of the Entomological Society of Canada 97: 5–60.
Houck MA, Strauss RE, 1985. The comparative study of functional responses: Experimental design and statistical interpretation. Canadian Entomologist 115: 617–629.  
Jervis MA, Kidd NAC, 1996. Insect natural enemies: Practical approaches to their study and evaluation. Chapman and Hall, London. 491 pp.                                                                      
Juliano SA, 2001. Non-linear curve fitting: Predation and functional response curves. In: Scheiner SM, Gurevitch J (eds). Design and Analysis of Ecological Experiments. Chapman and Hall, New York. Pp. 178–196.
Kareiva P, 1990. The special dimension in pest-enemy interaction. In: Mackauer M, Ehler LE, Roland J (eds). Critical Issues in Biological Control. Intercept, Anover, Hants. Pp. 213–227.
Luck RF, 1985. Principles of arthropod predation. In: Huffaker CB, Rabb RL (eds). Ecological Entomology. Wiley, New York. Pp. 497–530.
Mahzoum AM, Villa M, Benhadi-Marín J, José Alberto Pereira JA, 2020. Functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) larvae on Saissetia oleae (Olivier) (Hemiptera: Coccidae): implications for biological control. Agronomy 10: 1511.
Moeezipoor M, Kafil M, Nooeei S, Allahyari H, 2008. Functional response of predatory mite, Phytoseius plumifer (Canestrini & Fanzago) on different densities of Amphitetranychus viennensis (Zacher) and Tetranychus urticae (Koch). Agricultural Research 8 (3): 107–116.
Molles MC, Pietruszka RD, 1987. Prey selection by a stonefly: the influence of hunger and prey size. Oecologia 72: 473–478.                                                                                                                           
Montoya-Alvarez AF, Ito K, Nakahira K, Arakawa R, 2010. Functional response of Chrysoperla nipponensis and Chrysoperla carnea (Neuroptra: Chrysopidae) to the cotton aphid Aphis gossypii Glover (Homoptera: Aphididae) under laboratory conditions. Applied Entomology and Zoology 45 (1): 201–206. 
Mottaghinia L, Hassanpour M, Razmjou J, Hosseini M, Chamani E, 2016. Functional response of Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae) to Aphis gossypii Glover (Hemiptera: Aphididae): Effects of vermicompost and host plant cultivar. Neotropical Entomology 45: 88–95.
Murdoch WW, Briggs CJ, Nisbet RM, 2003. Consumer-resource dynamics. Princeton, NJ: Princeton University Press. 464 pp.         
Mushtaq T, Khan AA, 2010a. Functional and aggregational response of Chrysoperla sp. (carnea-group) (Neuroptera: Chrysopidae) on Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae). Journal of Biological Control 24: 28–34.                                                                   
Mushtaq T, Khan AA, 2010b. Functional response of Chrysoperla carnea larvae (Stephens) (Neuroptera: Chrysopidae) to Aphis craccivora Koch and Aphis pomi De Geer (Homoptera: Aphididae). Indian Journal of Agricultural Sciences 80: 95–98. 
Nedved O, Salvucci S, 2008. Ladybird Coccinella septempunctata (Coleoptera: Coccinellidae) prefers toxic prey in laboratory choice experiment. European Journal of Entomology 105: 431–436.                                               
Nordlund DA, Morrison RK, 1990. Handling time, prey preference, and functional response for Chrysoperla rufilabris in the laboratory. Entomologia Experimentalis et Applicata 57: 237–242.  
O’Neil RJ, 1989. Comparison of laboratory and field measurements of the functional response of Podisus maculiventris (Heteroptera: Pentatomidae). Journal of the Kansas Entomological Society 62: 148–155.
O’Neil RJ, 1997. Functional response and search strategy of Podisus maculiventris (Heteroptera: Pentatomidae) attacking Colorado potato beetle (Coleoptera: Chrysomelidae). Environmental Entomology 26: 1183–1190.
Pervez A, Omkar, 2005. Functional responses of coccinellid predators: An illustration of a logistic approach. Journal of Insect Science 5: 1–6.
Provost C, Lucas E, Coderre D, 2006. Prey preference of Hyaliodes vitripennis as an intraguild predator: Active predator choice or passive selection? Biological Control 37: 148–154.                                                                                                                                        
Reddy GVP, 2002. Plant volatiles mediate orientation and plant preference by the predator Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Biological Control 25: 49–55.                                                                             
Rogers DJ, 1972. Random search and insect population models. Journal of Animal Ecology 41: 369–383.                   
Sabelis MW, 1992. Predatory arthropod. In: Crawley MJ (ed). Natural Enemies: The Population Biology of Predators, Parasites and Diseases. Blackwell, Oxford, UK. Pp. 225–264.      
Sajjad S, Sultan A, Farhanullah Khan M, Keerio ID, Samiullah Channa M, et al., 2021. Biology, life table parameters, and functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) on different stages of invasive Paracoccus marginatus (Hemiptera: Pseudococcidae). Journal of Asia-Pacific Biodiversity 14: 174–182.
Santos TM, Junior ALB, Barbosa JC, 2005. Functional response of Chrysoperla externa to Aphis gossypii in cotton cultivars. Manejo Integrado de Plagasy Agroecologia 74: 41–47. 
SAS Institute, 2002. The SAS system for Windows, ver. 9.1. SAS Institute, Cary, NC.
Soroushmehr Z, 2004. Effect of spirae and Thompson orange plants on biological parameters of spirae aphid, Aphis spiraecola Patch and ladybeetle, Scymnus syriacus Marseul. M.Sc. Thesis, Faculty of Agriculture, University of Guilan, Iran.
 
SPSS, 2007. SPSS Base 16.0 User’s Guide. SPSS Incorporation, Chicago, IL.      
Sultan A, Khan MF, 2014. Functional response of Chrysoperla carnea (Stephens) (Neuropetra: Chrysopidae) to sugarcane whitefly Aleurolobus barodensis (Maskell) in laboratory conditions. Journal of Insect Behavior 27 (4): 454–461.                                                                                                                                              
Syed AN, Ashfaq M, Ahmad S, 2008. Comparative effect of various diets on development of Chrysoperla carnea (Neuroptera: Chrysopidae). International Journal of Agriculture and Biology 10: 728–730.                                                                                                                         
Tena A, Garcia-Mari F, 2011. Current situation of citrus pests and diseases in the Mediterranean basin. IOBC-WPRS Bulletin 62: 365–378. 
Vacante V, Gerson U, 2012. Integrated Control of Citrus Pests in the Mediterranean Region. Bentham Books. 281 pp.  
van Alphen JJM, Jervis MA, 1996. Foraging behavior: In: Jervis M, Kidd N (eds). Insect Natural Enemies, Practical Approaches to Their Study and Evaluation. Chapman and Hall, London. Pp. 1–62.                                                                    
Vogt H, Bigler F, Brown K, Candolfi MP, Kemmeter F, et al., 2000. Laboratory method to test effects of plant protection products on larvae of Chrysoperla carnea Stephens (Neuroptera: Chrysopidae). In: Condolfi MP, Blomel S, Forster R (eds). Guidelines to Evaluate Side Effects of Plant Protection Products to Non-Target Arthropods. IOBC, BART, and EPPO Joint Initiative. Pp. 27–44.
Waage J, 1990. Ecological theory and the selection of biological control agents. In: Mackauer M, Ehler LE, Roland J (eds). Critical Issues in Biological Control. Intercept press, Andover. Pp. 135–157.
Zarei M, Madadi H, Zamani AA, Nedwed O, 2019. Predation rate of competing Chrysoperla carnea and Hippodamia variegata on Aphis fabae at various prey densities and arena complexities. Bulletin of Insectolog72 (2): 273–280.