چندشکلی و بیان دو پروتئین LysM-RLK در سیب زمینی قبل و بعد از بروز بیماری بلایت زودرس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد.

2 استاد، دانشکده علوم گیاهی، دانشگاه مک گیل، سنت ان د بلوو، کانادا.

چکیده

چکیده
گیرنده­های (LysM-RLKs) Lysin Motif Receptor-like Kinases، به­ دلیل وجود موتیف لیزین ((LysM، به کیتین آزاد شده از دیواره­ی قارچ­ها متصل و سبب فعال شدن آبشاری از پروتئین­ها و در نهایت سبب افزایش مقاومت به پاتوژن­ها می­شوند. برای بررسی بیان LysM-RLKs احتمالی ژنوم سیب زمینی در یک رقم حساس (Russet Burbank) و یک ژنوتیپ نسبتاً مقاوم (F06037) به Alternaria solani، میزان بیان و توالی LysM آنها به روش­های بیوانفورماتیکی و مولکولی مطالعه شد. در مجموع 35 پروتئین LysM-RLKs در ژنوم سیب زمینی شناسایی شد که از این تعداد، 26 پروتئین بدون LysM و تعداد پنج وچهار پروتئین به ترتیب دارای یک یا دو LysM بودند. از نه گیرنده LysM-RLKs ، تعداد دو گیرنده LysM-RLKs در اثر آلودگی­ به A. solani افزایش بیان نشان دادند. پروتئین PGSC0003DMP400061331 با دو LysM بیان بیشتری در مقایسه با پروتئین PGSC0003DMP400060418 با یک LysM داشت. این پروتئین­ها به ترتیب با پروتئین CERK1 آرابیدوپسیس (AB367524) 98 و 81 درصد شباهت داشتند. همردیفی ناحیه­ی LysM این دو پروتئین با یکدیگر و با ناحیه­ی همولوگ در پروتئین CERK1 آرابیدوپسیس نشان داد که دو LysM پروتئین PGSC0003DMP400061331 در دو رقم تفاوتی نداشتند، اما در LysM اول پروتئین PGSC0003DMP400061331 یک ناحیه به توالی "NRD" وجود دارد که در LysM دوم همین پروتئین و پروتئین CERK1 آرابیدوپسیس دیده نمی­شود و به نظر می­رسد که حاصل حذف یا اضافه شدگی باشد. با انجام روش­های ویرایش ژنوم می­توان نقش این ژن­ها را در موضوع مقاومت یا حساسیت به قارچ A. solaniمشخص نمود و از نتایج حاصل برای تولید گیاهان تراریخت مقاوم استفاده کرد.
 

 

کلیدواژه‌ها


عنوان مقاله [English]

Polymorphism and Expression Analysis of two Potato Receptor Genes (LysM-RLKs), Following Alternaria solani Infection

نویسندگان [English]

  • Fahad Nazariyan Firuzabadi 1
  • Ajamada Kushalappa 2
1 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Iran.
2 Department of Plant Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada.
چکیده [English]

Abstract
The Lysin motif in receptor-like kinases (LysM-RLKs) bind to chitin or chitin components of the fungal pathogen cell wall to perceive their invasion. To study the LysM-RLK domains of potato genome involved in Alternaria solani response, the putative LysM-RLKs were bioinformatically assessed, sequenced and their expression levels were measured in a susceptible (Russet Burbank) and relatively resistant (F06037) genotypes, following inoculation of the pathogen. A total of 35 putative LysM-RLKs were detected in potato genome, of which 26, 5 and 4 LysM-RLK had none, one and two LysM motifs, respectively. Among 9 receptors containing LysM-RLK domains, two proteins showed a significant overexpression following A. solani infection.
PGSC0003DMP400061331 protein with two LysM motifs had a higher expression level than PGSC0003DMP400060418 protein with one LysM motif. Both proteins had 98% and 81% coverage with Arabidopsis thaliana CERK1 protein, respectively. Multiple sequence alignment (MSA) of LysM motifs from both proteins of two potato genotypes with that of Arabidopsis thaliana CERK1 revealed no difference between genotypes with respect to LysM motif sequence. Interestingly, the LysM motifs from PGSC0003DMP400061331 protein had an “NRD” insertion as compared to its second LysM motif, PGSC0003DMP400060418, and Arabidopsis taliana CERK1 LysM motifs. Such changes may have occurred through deletions or duplications. Alteration of DNA sequences by genome editing methods may shed light on the role of these genes in the field of resistance or susceptibility to A. solani leading to generation of resistant transgenic plants to devastating fungal diseases.
 

کلیدواژه‌ها [English]

  • Keywords: Chitin
  • Genome editing
  • Innate immunity
  • Receptor Like Kinases
  • Sequencing
Aalen RB, 2017. Plant Receptor Kinases:Methods and Protocols, Ed, Vol(1621), Springer Nature publishing.
Arrighi J-F, Barre A, Amor BB, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet E-P, Ghérardi M, Huguet T, 2006. The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant physiology 142(1): 265-279.
Bagherabadi S, Zafari D, Soleimani MJ, 2015. A report on the Alternaria species and its similar genera in Hamedan province. Taxonomy and Biosystematics 7(24):95-112.
Beliveau C, Potvin C, Trudel J, Asselin A, Bellemare G, 1991. Cloning, sequencing, and expression in Escherichia coli of a Streptococcus faecalis autolysin. Journal of Bacteriology 173(18): 5619-5623.
Bolton MD, van Esse HP, Vossen JH, de Jonge R, Stergiopoulos I, Stulemeijer IJ, van den Berg GC, Borras-Hidalgo O, Dekker HL, de Koster CG, de Wit PJ, Joosten MH, Thomma BP, 2008. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol Microbiol 69(1): 119-136.
Buist G, Steen A, Kok J, Kuipers OP, 2008. LysM, a widely distributed protein motif for binding to (peptido) glycans. Molecular Microbiology 68(4): 838-847.
Carotenuto G, Chabaud M, Miyata K, Capozzi M, Takeda N, Kaku H, Shibuya N, Nakagawa T, Barker DG, Genre A, 2017. The rice LysM receptor‐like kinase OsCERK1 is required for the perception of short‐chain chitin oligomers in arbuscular mycorrhizal signaling. New Phytologist 214(4): 1440-1446.
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD, 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic acids research 31(13):3497-500.
Conrath U, Linke C, Jeblick W, Geigenberger P, Quick WP, Neuhaus HE, 2003. Enhanced resistance to Phytophthora infestans and Alternaria solani in leaves and tubers, respectively, of potato plants with decreased activity of the plastidic ATP/ADP transporter. Planta 217(1): 75-83.
Corpet F, 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research 16(22): 10881-10890.
Couto D, Zipfel C, 2016. Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology 16(9): 537.
De Jonge R, Thomma BP, 2009. Fungal LysM effectors: extinguishers of host immunity? Trends in microbiology 17(4): 151-157.
Erwig J, Ghareeb H, Kopischke M, Hacke R, Matei A, Petutschnig E, Lipka V, 2017. Chitin‐induced and Chitin Elicitor Receptor Kinase1 (CERK1) phosphorylation‐dependent endocytosis of Arabidopsis thaliana Lysin Motif‐Containing Receptor‐Like Kinase5 (LYK5). New Phytologist 215(1): 382-396.
Espinoza C, Liang Y, Stacey G, 2017. Chitin receptor CERK1 links salt stress and chitin‐triggered innate immunity in Arabidopsis. The Plant Journal 89(5): 984-995.
Garvey KJ, Saedi MS, Ito J, 1986. Nucleotide sequence of Bacillus phage Ø29 genes 14 and 15: homology of gene 15 with other phage lysozymes. Nucleic Acids Research 14(24): 10001-10008.
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Ed, Vol 41. [London]: Information Retrieval Ltd., c1979-c2000.
Jones JD, Dangl JL, 2006. The plant immune system. Nature 444(7117): 323.
Letunic I, Doerks T, Bork P, 2014. SMART: recent updates, new developments and status in 2015. Nucleic Acids Research 43(D1): D257-D260.
Lin W, Lu D, Gao X, Jiang S, Ma X, Wang Z, Mengiste T, He P, Shan L, 2013. Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1. Proceedings of the National Academy of Sciences 110(29): 12114-12119.
Liu Z, Wu Y, Yang F, Zhang Y, Chen S, Xie Q, Tian X, Zhou J-M, 2013. BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proceedings of the National Academy of Sciences 110(15): 6205-6210.
Livak KJ, Schmittgen TD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 25(4): 402-408.
Macho AP, Zipfel C, 2014. Plant PRRs and the activation of innate immune signaling. Molecular Cell 54(2): 263-272.
Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, 2003. A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals. Nature 425(6958): 637.
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, 2016. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research 45(D1): D200-D203.
Mélida H, Sopeña‐Torres S, Bacete L, Garrido‐Arandia M, Jordá L, López G, Muñoz‐Barrios A, Pacios LF, Molina A, 2018. Non‐branched β‐1, 3‐glucan oligosaccharides trigger immune responses in Arabidopsis. The Plant Journal 93(1): 34-49.
Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N, 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104(49): 19613-19618.
Narusaka Y, Shinya T, Narusaka M, Motoyama N, Shimada H, Murakami K, Shibuya N, 2013. Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis. Plant Signal Behav 8(9): e25345.
Nicot N, Hausman J-F, Hoffmann L, Evers D, 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of experimental botany 56(421): 2907-2914.
Pasche J, Piche L, Gudmestad N, 2005. Effect of the F129L mutation in Alternaria solani on fungicides affecting mitochondrial respiration. Plant Disease 89(3): 269-278.
Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V, 2010. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. Journal of Biological Chemistry 285(37): 28902-28911.
Petutschnig EK, Stolze M, Lipka U, Kopischke M, Horlacher J, Valerius O, Rozhon W, Gust AA, Kemmerling B, Poppenberger B, Braus GH, Nurnberger T, Lipka V, 2014. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing. New Phytol 204(4): 955-967.
Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, 2003. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425(6958): 585.
Ray PD, Huang B-W, Tsuji Y, 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling 24(5): 981-990.
Schultz J, Copley RR, Doerks T, Ponting CP, Bork P, 2000. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Research 28(1): 231-234.
Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N, 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64(2): 204-214.
Shinya T, Yamaguchi K, Desaki Y, Yamada K, Narisawa T, Kobayashi Y, Maeda K, Suzuki M, Tanimoto T, Takeda J, 2014. Selective regulation of the chitin‐induced defense response by the Arabidopsis receptor‐like cytoplasmic kinase PBL27. The Plant Journal 79(1): 56-66.
Shiu S-H, Bleecker AB, 2001a. Plant receptor-like kinase gene family: diversity, function, and signaling. Sci stke 113(113): re22.
Shiu S-H, Bleecker AB, 2001b. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proceedings of the National Academy of Sciences 98(19): 10763-10768.
Shiu S-H, Bleecker AB, 2003. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant physiology 132(2): 530-543.
Sigrist CJ, De Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I, 2012. New and continuing developments at PROSITE. Nucleic Acids Research 41(D1): D344-D347.
Tanaka K, Nguyen CT, Liang Y, Cao Y, Stacey G, 2013. Role of LysM receptors in chitin-triggered plant innate immunity. Plant Signal Behav 8(1): e22598.
Torii KU, 2009. Transmembrane receptors in plants: receptor kinases and their ligands. Annu Plant Rev 33:1-29.
Tsedaley B, 2014. Review on early blight (Alternaria spp.) of potato disease and its management options. J Biol Agric Healthc 4: 191-198.
Van der Waals JE, Korsten L, Slippers B, 2004. Genetic diversity among Alternaria solani isolates from potatoes in South Africa. Plant Disease,88(9):959-64.
Wang C, Wang G, Zhang C, Zhu P, Dai H, Yu N, He Z, Xu L, Wang E, 2017. OsCERK1-Mediated Chitin Perception and Immune Signaling Requires Receptor-like Cytoplasmic Kinase 185 to Activate an MAPK Cascade in Rice. Mol Plant 10(4): 619-633.
Zhou X, Wang J, Peng C, Zhu X, Yin J, Li W, He M, Wang J, Chern M, Yuan C, 2016. Four receptor‐like cytoplasmic kinases regulate development and immunity in rice. Plant, cell & environment 39(6): 1381-1392.
Zipfel C, 2008. Pattern-recognition receptors in plant innate immunity. Current Opinion in Immunology. 20(1):10-16.