ثبات مقاومت به دلتامترین و احتمال ناکارآمدی آن در کنترل مینوز برگ گوجه فرنگی Tuta absoluta (Lepidoptera: Gelechiidae)

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان.

چکیده

چکیده
ظهور و گسترش مقاومت در بین گونه­های آفت، از دلایل اصلی ناکارآمدی ترکیبات حشره­کش در کنترل آفات در دز یا غلظت توصیه شده روی برچسب جهت استفاده در مزرعه یا گلخانه به شمار می­رود. نظر به اهمیت مسئله، در این بررسی پایداری مقاومت به دلتامترین به همراه احتمال عدم کارایی آن در کنترل جمعیت­های گلخانه­ای(Meyrick)  Tuta absoluta در استان همدان مورد ارزیابی قرار گرفت. زیست­سنجی به روش غوطه­وری برگ در محلول سمی و روی لاروهای سن دوم انجام شد. بررسی احتمال ناکارآمدی دلتامترین در کنترل جمعیت­های گلخانه­ای مینوز برگ گوجه­فرنگی با استفاده از یک غلظت افتراقی عملی (میزان توصیه شده روی برچسب جهت استفاده در مزرعه یا گلخانه) و بر مبنای حداقل کارایی (تلفات 80%) انجام گرفت. ضریب مقاومت برآورد شده برای جمعیت­های مورد بررسی از 25/1 تا 91/13 برابر متغیر بود. نتایج زیست­سنجی­ها، عدم کارایی دلتامترین در کنترل جمعیت­های گلخانه­ای شماره 6 و 7 مینوز برگ گوجه­فرنگی را تأیید نمود (66-52 درصد ناکارآمدی). کاهش معنی­دار ضریب مقاومت به دلتامترین، از 91/13 به 87/1 برابر (ضریب کاهش مقاومت معادل 12/0)، پس از هفت نسل پرورش به دور از فشار انتخابی حشره­کش، نشان دهنده­ی وضعیت ناپایدار مقاومت به دلتامترین در بین جمعیت­های گلخانه­ای T. absoluta بود، وضعیتی که می­تواند ناشی از هزینه­های بالای شایستگی در فنوتیپ مورد نظر باشد. بر اساس نتایج این تحقیق، به نظر می­رسد تکیه­ی مستمر بر مصرف حشره­کش­های پایرتروییدی و احتمالاً ترکیبات فسفره بتواند ادامه­ی استفاده از این دو گروه از ترکیبات حشره­کش در گلخانه­های استان همدان علیه مینوز برگ گوجه­فرنگی را با چالش­ مواجه سازد.

 

کلیدواژه‌ها


عنوان مقاله [English]

Stability of Resistance to Deltamethrin in Tomato Leaf Miner, Tuta absoluta (Lepidoptera: Gelechiidae) and Control Failure Likelihood

نویسندگان [English]

  • Mariyam Malek Mohammadi
  • Amir Hossein Egbalian
Assistance Professor, Department of Plant Protection, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran.
چکیده [English]

Abstract
Resistance to insecticides is one of the several factors responsible for control failures of Tuta absoluta (Meyrick), but this phenomenon has been very little studied to date. The aims of the present study were to: 1) assess the susceptibility of seven greenhouse populations of T. absoluta to deltamethrin, in comparison with the most susceptible population 2) assess the likelihood of deltamethrin control failures in the surveyed populations. 3) determine the stability of resistance to deltamethrin in greenhouse populations of Tuta absoluta. Bioassays were done using 2nd instar lande and dipping method to determine the resistance level. Calculated resistance ratios varied from 1.25- to 13.91 fold. Additionally, the control failure likelihood, thenarrow meaning of insecticide resistance, was surveyed using the insecticide recommended label rate as the discriminating concentration, and the 80% efficacy in greenhouse populations of the tomato leaf miner. The 80% mortality is the lowestexpected efficacy level without control failure due to resistance to insecticides. Mortality dueto treatment with deltamethrin at the label rate was considered significantly lower than 80%, when the recommended label rate was lower than the lower threshold of the 95% fiducial limits of LC80. Deltamethrin exhibited the expected control efficacy (between 85% and 100%) against the tomato leaf miner populations at the recommended label rates with the exception of two populations that were resistant to this insecticide. The significant decrease in resistance ratio over seven generations withoutany selection pressure indicated that resistance to deltamethrin remained obviously unstable.
 

کلیدواژه‌ها [English]

  • Keywords: Deltamethrin
  • Tomato leaf miner
  • Control failure likelihood
  • Resistance stability
  • Label rate
چراغیان ا.1390. راهنمایی شناسایی، ردیابی و کنترل آفت شب­پره مینوز گوجه­فرنگی. سازمان حفظ نباتات وزارت جهاد کشاورزی.
ملک­محمدی م. 1396. سازوکار مقاومت به دلتامترین در جمعیت­های مزرعه­ای مینوز برگ گوجه­فرنگی Tuta absoluta. نامه انجمن حشره­شناسی ایران، جلد 37، شماره 3. صفحه­های 348-333.
Abbas N, Khan HAA and Shad SA, 2014a. Cross-resistance, genetics, and realized heritability of resistance to fipronil in the house fly, Musca domestica (Diptera: Muscidae): a potential vector for disease transmission. Parasitology Research 113: 1343–1352.
Abbas N, Khan HAA and Shad SA, 2014b. Resistance of the house fly Musca domestica (Diptera: Muscidae) to lambda- cyhalothrin: mode of inheritance, realized heritability, and cross-resistance to other insecticides. Ecotoxicology 23: 791–801.
Abbas N, Ijaz M, Shad SA and Khan H, 2015. Stability of field-selected resistance to conventional and newer chemistry insecticides in the house fly, Musca domestica L. (Diptera: Muscidae). Neotropical Entomology44: 402–409.
Abbott WS, 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267.
Afzal MBS, Shad SA, Abbas N, Ayyaz M, Walker WB, 2015. Cross-resistance, the stability of acetamiprid resistance and its effect on the biological parameters of cotton mealybug, Phenacoccus solenopsis (Homoptera: Pseudococcidae), in Pakistan. Pest Management Science 71: 151–158.
Ahmad M, Arif MI and Ahmad Z, 2003. Susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to new chemistries in Pakistan. Crop Protection 22: 539–544.
Ahmad M, Sayyed AH, Crickmore N, and Saleem, MA, 2007. Genetics and mechanism of resistance to deltamethrin in a field population of Spodoptera litura (Lepidoptera: Noctuidae). Pest Management Science 63:1002-1010.
Basit M, Sayyed AH, Saleem MA and Saeed S, 2011. Cross-resistance, inheritance and stability of resistance to acetamiprid in cotton whitefly, Bemisia tabaci Genn (Hemiptera: Aleyrodidae). Crop Protection 30: 705–712.
Bird LJ, 2015. Baseline susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to indoxacarb, emamectin benzoate, and chlorantraniliprole in Australia. Journal of Economic Entomology 108: 294-300.
Bloem S and Spaltenstein E, 2011. New Pest Response Guidelines. Tomato Leaf miner (Tuta absoluta).United States Department of Agriculture, Animal and Plant Health Inspection, Service Cooperating State Departments of Agriculture.
Campos MR, Silva TBM, Silva WM, Silva JE and Siqueira HAA, 2014. Susceptibility of Tuta absoluta (Lepidoptera: Gelechiidae) Brazilian populations to ryanodine receptor modulators. Pest Management Science 71: 537–544.
Carriere Y, Deland JP, Roff D and Vincent C, 1994. Life history costs associated with the evolution of insecticide resistance. Proceedings of the Royal Society of London. Series B: Biological Sciences 258: 35–40.
Carriere Y, Ellers-Kirk C, Patin AL, Sims MA, Meyer S, Liu YB, Dennehy TJ and Tabashnik BE, 2001. Overwintering cost associated with resistance to transgenic cotton in the pink bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology94: 935–941.
Carriere Y and Tabashnik B, 2001. Reversing insect adaptation to transgenic insecticidal plants. Proceedings of the Royal Society of London. Series B: Biological Sciences 268: 1475– 1480.
Chilcutt CF and Tabashnik BE, 1995. Evaluation of pesticide resistance and slope of the concentration–mortality line: are they related? Journal of Economic Entomology88:11–20.
Crow JF, 1957. Genetics of insect resistance to chemicals. Annual Review of Entomology 2: 227–246.
Fragoso DB, Guedes RNC, Picanco MC and Zambolim L, 2002. Insecticide use and organophosphate resistance in the coffee leafminer Leucoptera coffeella (Lepidoptera: Lyonetiidae). Bulletin of Entomological Research 92: 203–212.
Goldin  AL, 2003. Mechanisms of sodium channel inactivation. Current OpinioninNeurobiology 13: 284–290.
Gontijo PC, Picanco MC, Pereira EJG, Martins JC, Chediak M and Guedes RNC, 2013. Spatial and temporal variation in the control failure likelihood of the tomato leaf miner, Tuta absoluta. Annals ofApplied Biology 162: 50–59.
Gunning RV, Moores GD and Devonshire AL, 1999. Esterase Inhibitors Synergise the Toxicity of Pyrethroids in Australian Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology 63: 50-62.
Haddi K, Berger M, Bielza P, Cifuentes D, Field LM, Gorman K, Rapisarda C, Williamson MS and Bass C, 2012. Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochemistry and MolecularBiology 42: 506–513.
Huang SJ, Xu JF and Han ZJ, 2006. Baseline toxicity data of insecticides against the common cutworm Spodoptera litura (Fabricius) and a comparison of resistance monitoring methods. International Journal of Pest Management52: 209–213.
IRAC, Insecticide Resistance Action Committee, 2012a. Resistance: definition, background, development. Available from:  http://www.irac-online.org/about/resistance (accessed 8 August 2010).
IRAC, Insecticide Resistance Action Committee, 2012b. IRAC method no. 022: insecticide bioassay.for Tuta..absoluta..Available.from:..http://www.irac-online.org/wpcontent/  uploads/2009/09/Method_022_Tuta_.pdf (accessed 8 August 2012).
Ishtiaq M, Saleem MA and Wright DJ, 2012. Stability, cross resistance and effect of synergists, PBO and DEF, on deltamethrin resistant strain of Spodoptera exigua (Lepidoptera: Noctuidae) from Pakistan. Pakistan Journal of Zoology 44: 1677–1682.
Jan MT, Abbas N, Shad SA, Rafiq M and Saleem MA, 2015. Baseline susceptibility and resistance stability of Earias  vittella Fabricius (Lepidoptera: Noctuidae) to cypermethrin, deltamethrin and spinosad. Phytoparasitica43: 577–582.
Khan HAA and Akram W, 2014. The effect of temperature on the toxicity of insecticides against Musca domestica L.: implications for the effective management of diarrhea. PLoS One 9: e95636.
Khan HAA, AkramW and Shad SA, 2014. Genetics, cross resistance and mechanism of resistance to spinosad in a field strain of Musca domestica L. (Diptera: Muscidae). Acta Tropica 130: 148–154.
Khan HAA, Akram W and Haider  MS, 2015. Genetics and mechanism of resistance to deltamethrin in the house fly, Musca domestica L., from Pakistan. Ecotoxicology 24: 1213–1220.
Kliot A and Ghanim  M, 2012. Fitness costs associated with insecticide resistance. Pest Management Science 68: 1431–1437.
Kristensen M, Knorr M, Spencer  AG and Jespersen JB. 2000. Selection and reversion of azamethiphos-resistance in a field population of the housefly Musca domestica (Diptera: Muscidae), and the underlying biochemical mechanisms. Journal of Economic Entomology 93: 1788–1795.
Lai T, Li J and Su J, 2011. Monitoring of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) resistance to chlorantraniliprole in China. Pesticide Biochemistry and Physiology 101:198–205.
Li W, Zhang J, Zhang P, Lin W, Lin Q, Li Z, Hang F, Zhang Z and Lu Y, 2015. Baseline susceptibility of Plutella xylostella (Lepidoptera: Plutellidae) to the novel insecticide spinetoram in China. Journal of Economic Entomology 108: 736–741.
Lietti MMM, Botto E and Alzogaray RA, 2005. Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology 34: 113–119.
Miranda MMM, Picanco MC, Zanuncio JC and Guedes RNC, 2010. Ecological life table of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol ScienceandTechnology 8: 597–606.
Mota-Sanchez D, Whalon ME, Hollingworth RM and Xue, Q, 2008. Documentation of  Pesticide Resistance in Arthropods. Cromwell Press, Trowbridge, UK.
Narahashi T, 1996. Neuronal ion channels as the target sites of insecticides. PharmacologyandToxicology 79: 1–14.
Narahashi T, Frey J, Ginsburg K and Roy M, 1992. Sodium and GABA-activated channels as targets of pyrethroids and cyclodienes. Toxicology Letters 64: 429–436.
Picanco MC, Bacci L, Crespo ALB, Miranda MMM and Martins JC, 2007. Effect of integrated pest management practices on tomato Lycopersicon esculentum production and preservation of natural enemies of pests.  Agricultural and Forest Entomology9: 201–212.
Picanco MC, Leite GLD, Guedes RNC and Silva EA, 1998. Yield loss in trellised tomato affected by insecticidal sprays and plant spacing. Crop Protection 17: 447–452.
Prasanthi K, Muralidhara and Rajini PS, 2005. Fenvalerate-induced oxidative damage in rat tissues and its attenuation by dietary sesame oil. FoodandChemical Toxicology 43: 299–306.
Rehan A and Freed S, 2014. Selection, mechanism, cross resistance and stability of spinosad resistance in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Crop Protection 56: 10–15.
Robertson JL, Russel RM, Preisler HK and Savin NE, 2007. Bioassays with Arthropods. 2 nd ed. CRC Press, Inc, Boca Raton, FL.
Roditakis, E., Skarmoutsou, C. & Staurakaki, M. (2013)Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece. Pest Management Science 69: 834-840.
Roush R, 1993. Occurrence, genetics and management of insecticide resistance. Parasitology Today 9: 174–179.
Roush R, Hoy C, Ferro D and Tingey W, 1990. Insecticide resistance in the Colorado potato beetle (Coleoptera: Chrysomelidae): influence of crop rotation and insecticide use. Journal of Economic Entomology 83: 315–319.
Saddiq B, Shahzad Afzal MB and Shad SAJ, 2016. Studies on genetics, stability and possible mechanism of deltamethrin resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae) from Pakistan. Journal of Genetics 95: 1009-1016.
Sayyed AH, Attique MNR, Khaliq A and Wright DJ, 2005. Inheritance of resistance and cross-resistance to deltamethrin in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan. Pest Management Science 61: 636–642.
Sayyed AH, Pathan AK and Faheem U, 2010. Cross-resistance, genetics and stability of resistance to deltamethrin in a population of Chrysoperla carnea from Multan, Pakistan. Pesticide Biochemistry and Physiology98: 325–332.
Scott JG, Alefantis TG, Kaufman PE and Rutz DA, 2000. Insecticide resistance in house flies from caged-layer poultry facilities. Pest Management Science 56: 147–153.
Shah RM, Abbas N, Shad SA and Sial AA, 2015. Selection, resistance risk assessment, and reversion toward susceptibility of pyriproxyfen in Musca domestica L. Parasitology Research 114: 487-494.
SilvaWM, Berger M, Bass C, Balbino VQ, Amaral MHB, Campos MR  Siqueira HAA, 2015. Status of pyrethroid resistance and mechanisms in Brazilian populations of Tuta absoluta. Pesticide Biochemistry and Physiology 122: 8–14.
Silva GA, Picanco MC, Bacci L, Crespo ALB and Rosado JF, 2011. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Management Science 67: 913-920.
Siqueira HAA, Guedes RNC, Fragoso DB, Magalhaes LC, 2001. Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). International Journal of Pest Management 47: 247–251.
Siqueira HAA, Guedes RNC and Picanco MC, 2000a. Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agriculture and Forest Entomology 2: 147–153.
Siqueira HAA, Guedes RNC and Picanco MC, 2000b. Cartap resistance and synergism in populations of Tuta absoluta (Lep., Gelechiidae). Journal of Applied Entomology 124: 233–238.
Soderlund DM and Bloomquist JR, 1989. Neurotoxic actions of pyrethroid insecticides. Annual Review of Entomology 34: 77–96.
Soderlund DM and Knipple DC, 2003. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochemistry and Molecular Biology 33: 563–577.
Tabashnik BE, Finson N, Groeters FR, Moar WJ, Johnson MW, Luo K and Adang MJ, 1994. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proceedings of the National Academy of Sciences 91: 4120–4124.
Tabashnik BE, Mota-Sanchez D, Whalon ME, Hollingworth RM and Carriere Y, 2014. Defining terms for proactive management of resistance to Bt crops and pesticides. Journal of Economic Entomology 107: 496–507.
Temple J, Pommireddy P, Cook D, Marçon P and Leonard B, 2009. Susceptibility of selected lepidopteran pests to rynaxypyr®, a novel insecticide. Journal of Cotton Science 13: 23–31.
Villarini M, Moretti M, Pasquini R, Scassellati-Sforzolini G, Fatigoni C, Marcarelli M, Monarca S and Rodriguez AV, 1998. In vitro genotoxic effects of the insecticide deltamethrin in human peripheral blood leukocytes: DNA damage (‘comet’ assay) in relation to the induction of sister-chromatid exchanges and micronuclei. Toxicology 130: 129–139.
WHO, World Health Organization, 1957. Expert Committee on Malaria, seventh report. WHO Technical Report Series No. 125. Geneva, Switzerland: WHO.