تاثیر قارچ اندومایکوریز Piriformospora indica و اسید سالیسیلیک بر میزان فعالیت آنزیم های آنتی اکسیدان در گندم حساس به بیماری سفیدک سطحی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه گیاهپزشکی دانشکده کشاورزی دانشگاه گنبد کاووس

2 دانشیار گروه گیاهپزشکی دانشگاه علوم کشاورزی و منابع طبیعی ساری.

3 استادیار گروه گیاهپزشکی دانشگاه علوم کشاورزی و منابع طبیعی ساری.

4 دانشیار گروه گیاهپزشکی دانشکده کشاورزی دانشگاه گنبد کاووس.

چکیده

چکیده
استفاده از ترکیبات قارچ­کش علیه بیماری سفیدک سطحی در گندم که توسط Blumeria graminis f. sp. tritici  ، ایجاد میگردد، چندان مورد توجه قرار نمی­گیرد. لذا کاربرد روش­های دیگری مانند به کارگیری فعال کننده­های مصنوعی مکانیسم دفاعی که می­توانند مقاومت را به صورت سیستمیک در گیاهان القا نمایند، مطلوب به نظر می­رسد. به­دین منظور گیاهان گندم رقم فلات به عنوان رقم حساس به سفیدک، پس از همزیستی با قارچ اندومیکوریز Piriformospora indica به همراه گیاهان شاهد در معرض عامل بیماری قرار گرفت. از سویی دیگر، گیاهان دو هفته ای گندم فلات در آزمایش جداگانه­ای، 48 ساعت پس از تیمار با اسید سالسیلیک با قارچ عامل بیماری تلقیح گردید. میزان فعالیت آنزیم­های پراکسیداز، کاتالاز و آسکوربات پراکسیداز در چهار بازه زمانی صفر، 12، 24 و 48 ساعت پس از آلودگی در سه تکرار مورد بررسی قرار گرفت. نتایج نشان داد که گیاهان تیمار شده با اسید سالسیلیک هم قبل از آلودگی و هم بعد از آلودگی به قارچ عامل بیماری، فعالیت آنزیمی کمتری را نسبت به گیاهان شاهد نشان دادند (به استثنای آنزیم پراکسیداز که فعالیت آن هم قبل و هم بعد از آلودگی گیاه افزایش یافت). گیاهان همزیست شده با قارچ اندومایکوریز نیز به جز بیان بالای آنزیم پراکسیداز، تفاوت معنی­داری را از نظر فعالیت سایر آنزیم­ها با گیاه شاهد نشان ندادند، بنابراین می­توان چنین استنباط نمود که قارچ همزیست در القای مقاومت از طریق مسیر آنزیمی چندان موثر نمی­باشد. احتمالا این قارچ همزیست می تواند از طریق فعال نمودن مسیرهای دیگری مثل فعال­سازی پروتئین­های مرتبط به بیماری­زایی نقش ایفا نماید.  اسید سالسیلیک بوسیله کاهش میزان فعالیت آنزیم­های آنتی اکسیدان و القای مرگ سلولی به مبارزه با این بیمارگر بیوتروف می­پردازد، لذا کاربرد اسید سالسیلیک علیه بیماری سفیدک سطحی توصیه می­گردد.
 

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Piriformospora indica and Salicylic Acid on the Activity of Antioxidant Enzymes in the Wheat Sensitive to Powdery Mildew Fungus

نویسندگان [English]

  • Lila Ahangar 1
  • Gholam Ali Ranjbar 2
  • Valiallah Babaeizad 2
  • Hamid Najafi 3
  • Abbas Biyabani 4
1 Assistant Professor, Department of Plant Protection, Faculty of Agriculture, University of Gonbad kavous
2 Associate Professor, Department of Plant Protection, Faculty of Agriculture, Sari University of Agricultural Sciences and Natural Resources.
3 Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Sari University of Agricultural Sciences and Natural Resources.
4 Associated Professor, Department of Plant Protection, Faculty of Agriculture, University of Gonbad kavous.
چکیده [English]

Abstract
Use of fungicides against wheat powdery mildew disease caused by biotrophic Blumeria graminis f. sp. tritici (Bgt)), is not taken into consideration. Therefore, employment of artificial activator of defense mechanism that can induce resistance in plants, is very important. For this purpose, Falat cultivar as a susceptible genotype to powdery mildew, was inoculated with B. graminis after colonizing with endomycorrhizal fungus, Piriformospora indica, together with control plants. In another experiment, two weeks old Falat plants were treated with salicylic acid after 48h and then, were inoculated with the pathogen. Then, the pattern of catalase, peroxidase and ascorbate peroxidase antioxidant enzymes were compared at 0, 12, 24 and 48 hours after infection in three replications. The results of this study showed that the enzyme activity of the Falat treated with SA were less than the control plant before and after the disease (except peroxidase enzyme, which increased before and after infection). In symbiont plants, there was no significant difference in the amount of enzyme activities than control plants, except overexpression of peroxidase enzyme. Therefore, it seems that the symbiotic fungi is hot effect for inducing resistance via enzymatic pathway. Probably these fungi can play an important role through the activation of other pathways such as activation of pathogens related proteins. While, SA can suppress the biotrophic pathogen by reducing the capacity of the antioxidant enzymes and inducting the rapid cell death. Therefore, the application of SA against powdery mildew is recommended.
 

کلیدواژه‌ها [English]

  • Keywords: Antioxidant enzymes
  • Piriformospora indica
  • Salicilic Acid
  • Resistance induction
منابع مورد استفاده
Agrios GN, 2005. Plant Pathology. Academic Press, Science  922-952.
Ahangar L, Babaezade V, Ranjbar Gh.A, Najafi Zarrini H and Biabani A, 2016. Study of PR gene expression pattern related to in induced resistance to powdery mildew in susceptible wheat genotype after treating with salicylic acid. Journal of Crop Breeding   8: 208-218
Ahangar L, Ranjbar Gh.A, Babaezade V, Najafi Zarrini H and Biabani A, 2014. Study on expression of phenylalanine ammonia-lyase and pathogensis-related genes in wheat symbiont with endomycorrhizal fungus Piriformospora indica after infection with powdery mildew. Plant Disease Journal  50 : 369-384
Ashraf M, 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances  27:84-93.
Asthir B, Duffus CM, Smith R and Spoor W, 2002. Diamine oxidase is involved in H2O2 production in the chalazal cells during barley grain filling. Journal of Experimental Botany  53: 677-682. 
Bowler C and Fluhr R. 2000. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Science Abbreviations  5: 241–246.   
Chandra  A,  Saxena R, Dubey A and  Saxena P, 2007. Change in  phenylalanine ammonia lyase activity  and isozyme patterns of polyphenol oxidase and peroxidase by salicylic acid leading to enhanced resistance in cowpea against Rhizoctonia  solani.  Acta  Physiologiae Plantarum 29: 361–367
Conner RL, Kuzyk AD and Su H, 2003. Impact of powdery mildew on the yield of soft white spring wheat cultivars. Canadian Journal Plant Science  83: 725-728.
Dempsey DA, Shah J and Klessig DF, 1999. Salicylic acid and disease resistance in plants. Critical Reviews in Plant Science 18:547–75. 
Deshmukh S and Kogel K, 2007. Piriformospora indica protects barely from root rot disease caused by Fusarium. Journal of  Plant Disease and Protection  114: 263-268.
El- Khallal SM, 2007. Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (Arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid and salicylic acid): 2-changes in the antioxidant enzymes, phenolic compounds and pathogen related-proteins. Australian Journal Basic and Applied Science  1: 717-732.
El-Zahaby HM, Gullner G and Kiràly Z, 1995. Effects of powdery mildew infection of barley on the ascorbate-glutathione cycle and other antioxidants in different host-pathogen interactions. Phytopathology  85:1225–1230.
Harrach BD, Fodor J, Pogány M, Preuss J and Barna B, 2008. Antioxidant, ethylene and membrane leakage responses to powdery mildew infection of near-isogenic barley lines with various types of resistance. European Journal of Plant Pathology  121: 21–33
Hassibi P, Moradi F and Nabipour M, 2007. Screening of rice genotypes for low temperature stress-using chlorophyll flourescence. Iranian Journal of Crop Science  9: 14-31.
He CY and Wolyn DJ, 2005. Potential role for salicylic acid in induced resistance of asp aragus roots to Fusarium oxysporumf. sp. asparagi. Plant  Pathology  54: 227–232.  
Horvath E, Szalai G and Janda T, 2007. Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation  26: 290-300.
Hückelhoven R, Fodor J, Preis C and Kogel KH, 1999. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with H2O2 but not with salicylic acid accumulation. Plant Physiology  119: 1251-1260.  
In BC, Motomura S, Inamoto K and Doi M, 2007. Multivariente analysis of relation between preharvest environmental factors, postharvest morphological and physiological factors and vase life of cut Asomi Red Roses. Japanese Society for Horticultural Science 76: 66-72. 
Ishikawa T, Morimoto Y, Madhusudhan R, Sawa Y, Shibata H, Yabuta Y, Nishizawa A and Shigeoka Sh, 2005. Acclimation to diverse environmental stresses caused by a suppression of Cytosolic Ascorbate Peroxidase in tobacco BY-2 cells. Plant Cell Physiology  46: 1264-1271.
Kole C and Timothy C, 2008. Compendium of transgenic crop plants. Transgenic cereals and forage grasses. Wiley-Blackwell Publishing Ltd. ISBN. 978-1405-169240.
Kovács V, Pál M, Vida G, Szalai G and Janda T,  2011. Effect of powdery mildew infection on the antioxidant enzyme activities in different lines of Thatcher-based wheat. Acta Biologica Szegediensis  55: 99-100.
Liu Q, Yang JL, He LS, Li  YY and Zheng SJ, 2008. Effect of aluminium on cell wall, plasma membrane, antioxidants and root elongation in triticale. Biologia Plantarum  52: 87-92.
Luck H, 1974. Catalse in methods of  enzymatic analysis. Vol Π, edited by Bergmeyer J and Grabi M. Academic Press. New York: Ed Bergmeyer  p 885-890
Mittler R, Herr EH, Orvar BL, Van Camp W, Willekens H, Inze D and Ellis BE, 1999. Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are herresponsive to pathogen infection. Proceeding of the Natural Academy of Science   96:14165-70.
Moldenhauer J, Moerschbacher BM and Van der Westhuizen AJ, 2006. Histological investigation of stripe rust (Puccinia striiformis f. sp. tritici) development in resistant and susceptible wheat cultivars. Plant Pathology  55: 469-474.
Nakano Y and Asada K, 1987. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiology 28: 131-140.
Nie X, 2006. Salicylic acid suppresses Potato virus Y isolate N:O-induced symptoms in tobacco plants. Phytopathology  96: 255- 63
Qinghua SH and Zhujun Z, 2008. Effect of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany  63:317-324
Siahpoush S, Sahebani N and Aminian H, 2011. Change of some defense compounds of cucumber treated with Bacillus cereusand salicylic acid against Meloidogyne javanica. African Journal of Plant Science  5: 829-834.
Sharma YK, Jeon J, Raskin I and Davis KR, 1996.Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proceedings of the National Academy of Sciences USA  93: 5099-5104. 
Stein E, Molitor A, Kogel KH and Waller F, 2008. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiology  49: 1747-51.
Torres MA, Jonathan DG and Dangl JL, 2006. Reactive oxygen species signaling in response to pathogen. Plant Physiology  141: 373-378.
Varma A, Verma S, Sudha H, Sahay N, Beutehorn B and Franken P, 1999. Piriformospora indica, a cultivable plant-growth promoting root endophyte. Applied Environment Microbiology  65: 2741-2744. 
Vlot AC, Dempsey DA and Klessig DF, 2009. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology  47: 177-206. 
Zawoznik MS, Groppa MD, Tomaro ML and Benavides MP, 2007. Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Science  173: 190-197.
Zeighaminezhad R and Sharifi Sirchi GhR, 2014. Study of PR gene expression and activity of effective enzymes in induced resistance to Powdery mildew by Salicylic acid. Biotechnology  Journal  5: 97-110.