بررسی اثرآنتاگونیتسی جدایه های درون‌زی و تجاری تریکودرما روی قارچ Phaeoacremonium minimum ، عامل بیماری نوار برگی انگور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دوره دکتری بیماری‌شناسی گیاهی، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه تبریز.

2 استاد بیماری شناسی و قارچ شناسی گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه تبریز.

چکیده

چکیده
     بیماری نوار برگی انگور که قبلا تحت عنوان بیماری مرکب اسکا شناخته می‌شد، یکی از مهم‌ترین و مخرب‌ترین بیماری‌های تنه­ی انگور به شمار می­رود. قارچ Phaeoacremonium minimum به عنوان یکی از عوامل اصلی ­دخیل در این بیماری شناخته شده است. کنترل بیماری نوار برگی انگور با استفاده از ترکیبات شیمیایی مشکل بوده و در عین حال استفاده از عوامل کنترل زیستی در مدیریت این بیماری نسبتا موثر شناخته شده است. در تحقیق حاضر، پتانسیل بازدارندگی سه گونه Trichoderma شامل T. harzianum (جدایه تجاری (T22،T. longibrachiatum  و T. brevicompactum (جدایه­های درون‌زی) روی چهار جدایه Pm. minimum با دو تیپ آمیزشی متفاوت با استفاده از روش­های کشت متقابل، تاثیر متابولیت­های فرار و متابولیت‌های غیر فرار ارزیابی گردید. نتایج به دست آمده از این مطالعه، نشان داد که تمامی جدایه‌های آنتاگونیست در مقایسه با شاهد تاثیر معنی داری بر رشد شعاعی Pm. minimumدارند. در روش کشت متقابل، T. harzianum T22 با 53/76 درصد بازدارندگی رشد پرگنه در مقایسه با دو آنتاگونیست دیگر از پتانسیل بالاتری در بازدارندگی از رشد Pm. minimum برخوردار بود.همچنین ارزیابی اثرات کنترلی ترکیبات فرار این آنتاگونیست‌ها حاکی از آن بود که اختلاف معنی داری بین این سه گونه آنتاگونیست وجود ندارد. ترکیبات غیر فرار T. brevicompactumبا 75.46 درصد بازدارندگی از رشد پرگنه بیمارگر پتانسیل کنترلی بالاتری را نسبت به دو گونه­ی دیگر دارا بود.ترکیبات غیر فرار دو گونه T. longibrachiatum و T. harzianum T22 به ترتیب 93/46 و 67/17 درصد بازدارندگی داشتند. همچنین بررسی اثرات کنترلی این آنتاگونیست‌ها روی دو تیپ آمیزشی Pm. aleophilum نشان داد که ترکیبات فرار T. longibrachiatumاثرات کنترلی بیشتری روی تیپ آمیزشی MAT1-1 (74/48 درصد) نسبت به MAT1-2 (10/35) دارند. در حالت کلی، نتایج این بررسی نشان داد که گونه T. brevicompactum به عنوان یک گونه آنتاگونیست با قابلیت بالا درکنترل زیستیPm. minimum  مطرح می‌باشد، بنابراین بررسی‌های تکمیلی در مورد ویژگی‌های کنترل زیستی و کارایی این گونه در کنترل بیمارگرهای دخیل در این بیماری در شرایط گلخانه­ای و مزرعه‌ای مورد نیاز می­باشد.
 

 

کلیدواژه‌ها


عنوان مقاله [English]

Antagonistic Effect of Endophytic and Commercial Trichoderma Isolates on Phaeoacremonium minimum, the Causal Agent of Leaf Stripe Disease of Grapevine

نویسندگان [English]

  • Abolfazl Narmani 1
  • Mehdi Arzanlou 2
  • Asadullah Babei Ahrai 2
1 PhD. Student of Plant Pathology, Department of Plant Protection, Faculty of Agricultre, University of Tabriz, Tabriz, Iran.
2 Professer of Plant Pathology and Mycology, Respectiveley, Department of Plant Protection, Faculty of Agricultre, University of Tabriz, Tabriz, Iran.
چکیده [English]

Abstract
Leaf stripe disease (LSD) of grapevine, which was previously known as esca complex disease, is one of the most important and destructive trunk diseases of grapevines.Phaeoacremonium minimum is the principle hyphomycete associated with disease. Chemical control of LSD has proven difficult, meanwhile, application of biological control agents for disease management have been promising. The aim of present study was to evaluate inhibitory potentiol of three Trichoderma species sincluding one commercial product (Trichoderma harzianum T22) and two endophytic isolates, T. longibrachiatum and T. brevicompactum, against four isolates of Pm. minimum with opposite mating type (two MAT1-1 and two MAT1-2 isolates) using dual culture, volatile and non-volatile metabolite assays. The results of this study showed that all three species of the antagonist had significant inhibitory effect on the growth of Pm. minimum, in comparison to the control. In dual culture assay, T. harzianum T22 showed the highest potential in the inhibition of the Pm. minimum growth, with 76.53 percent growth inhibition, in comparison to the two other antagonists. In volatile metabolites assay, significant differences were observed among the antagonists in growth inhibition of the Pm. minimum. In non-volatile compounds assay, T. brevicompactum with 75.46 percent growth inhibition of pathogen, showed the highest control potential in comparison with the other two species. Non-volatile compounds of T. longibrachiatum and T. harzianum T22 showed 46.93 and 17.67 percent inhibition on colony growth, respectively.  Evaluation of the inhibitory effects of these antagonists on the opposite mating types of Pm. minimum showed that volatile compounds of T. longibrachiatum were more effective on MAT1-1 (48.74% growth inhibition) compared to MAT1-2 (35.10 growth inhibition). Overall, the results of this study reveal T. brevicompactum as an effective antagonist against Pm. minimum; hence, further evaluation of its biocontrol properties and efficacy in disease control under greenhouse and field condition remain to be studied.

کلیدواژه‌ها [English]

  • Keywords: Antagonist
  • Leaf stripe disease
  • Mating type
  • Biological control
منابع
رضائی ع، کریمی شهری م، هاشمی م، قزل سفلو ن و دهواری و، 1393. بررسی اثر چند قارچ کش مهم بر روی رشد میسلیوم و جوانه زنی اسپور قارچ‌های مولد اسکای مو در شرایط آزمایشگاهی. نشریه حفاظت گیاهان (علوم و صنایع کشاورزی) جلد 28 شماره 2. صفحه‌های 254 تا 262.
قاسمی س، ارزنلو م، 1395. شناسایی ریخت شناختی و مولکولی گونه­های تریکودرمای اندوفیت درختان بلوط در جنگل­های ارسباران. نشریه پژوهش‌های کاربردی در گیاه‌پزشکی (زیر چاپ).
Adalat K, Whiting C, Rooney-Latham S and Gubler WD, 2000. Pathogenicity of three species of Phaeoacremonium spp. on grapevine in California. Phytopathologia Mediterranea39: 92-99.
Agustí-Brisach C and Armengol J. 2013. Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea 52(2): 245.
Arzanlou M, Crous PW and Zwiers LH, 2010. Evolutionary dynamics of mating-type loci of Mycosphaerella spp. occurring on banana. Eukaryotic Cell 9: 164-172.
Arzanlou M, Narmani A, Moshari S and Khodaei S, 2013. Pome and stone fruit trees as possible reservoir hosts for Phaeoacremonium spp., the causal agents of grapevine esca disease, in Iran. Archives of Phytopathology and Plant Protection 47: 717-727.
Arzanlou M, Khodaei S, Narmani A, Bababi-ahari A and Motallebi Azar A, 2014. Inhibitory effect of Trichoderma isolates on growth of Alternaria alternata, the causal agent of leaf spot disease on sunflower, under laboratory conditions. Archives of Phytopathology and Plant Protection 47 (13): 1592-1599.
Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL and Bailey BA, 2011. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Molecular Plant-Microbe Interactions 24(3):336-51.
Bailey BA, Bae H, Strem MD, Crozier J, Thomas SE, Samuels GJ, Vinyard BT and Holmes KA, 2008. Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control 46(1):24-35.
Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY and Holmes KA, 2006. Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224(6):1449-64.
Bailey BA and Melnick RL, 2013. The endophytic Trichoderma. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds.), Trichoderma: biology and applications, 1st edn. CAB International, London, pp. 152-172.
Bertsch C, Ramírez-Suero M, Magnin-Robert M, Larignon P, Chong J, Abou-Mansour E, Spagnolo A, Clément C,  and  Fontaine F. 2013. Grapevine trunk diseases: complex and still poorly understood. Plant Pathology 62(2): 243-265.
Damm U, Mostert L, Crous PW, and Fourie PH, 2008. Novel Phaeoacremonium species associated with necrotic wood of Prunus trees. Persoonia 20: 87-102.
Degenkolb T, Gräfenhan T, Nirenberg HI, Gams W and Brückner H, 2006. Trichoderma brevicompactum complex: rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). Journal of Agricultural and Food Chemistry 54: 7047-7061.
Dickinson JM, Hanson JR, Hitchcock PB and Claydon N, 1989. Structureand biosynthesis of harzianopyridone, an antifungal metabolite ofTrichoderma harzianum. Journal of the Chemical Society, Perkin Transactions 11: 1885-1897.
Di Marco S, Osti F and Cesari A, 2004. Experiments onthe control of Esca by Trichoderma.  PhytopathologiaMediterranea 43: 108-116.
Di Marco, S. and F. Osti, 2007. Application of Trichoderma to prevent Phaeomoniella chlamydospora infections in organic nurseries. Phytopathologia mediterranea 46 (1): P.73-83.
Dunlop RW, Simon A, Sivasithamparam K and Ghisalberti EL, 1989. Anantibiotic from Trichoderma koningii active against soilborne plantpathogens. Journal of Natural Products 52: 67-74.
Edington LV, Khew KL and Barron, 1971. Fungitoxic spectrum of benzimidazole compounds. Phytopathology 61: 42-44.
Edwards J and Pascoe IG, 2001. Pycnidial state of Phaeomoniella chlamydospora found on Pinot noir grapevines in the field. Australian Plant Pathology 30: 67.
Eskalen A, Feliciano AJ and Gubler WD, 2007. Susceptibility of grapevine pruning wounds andsymptom development in response to infection by Phaeoacremonium aleophilum and Phaeomoniella chlamydospora. Plant Disease 91: 1100-1104.
Essakhi S, Mugnai L, Crous PW, Groenewald JZ and Surico G, 2008. Molecular and phenotypic characterization of novel Phaeoacremonium species isolated from esca diseased grapevines. Persoonia 21: 119-134.
Fourie PH, Halleen F, Groenewald M and Crous PW, 2000. Black goo decline of grapevine: Current understanding of this mysterious disease. Winelands 2000: 93-96.
Fourie PH and Halleen F, 2004. Proactive control of Petri disease of grapevine through treatment of propagation material. Plant Disease 88: 1241-1245.
Fourie PH, Halleen F, van der Vyver J and Schreuder W. 2001. Effects of Trichoderma treatments on the occurrence of decline pathogens in the roots and rootstocks of nursery grapevines. Phytopathologia Mediterranea 40(3): 473-478.
Grafenhan T, 2006. Epidemiology and biological control of latent grapevine trunk diseases. Ph.D. Thesis, Humboldt-University, Berlin, Germany.
Gramaje D, García-Jiménez J and Armengol J, 2008. Sensitivity of Petri disease pathogens to hot water treatments in vitro. Annals of Applied Biology 153: 95-103. 
Gramaje D, Armengol J, Mohammadi H, Banihashemi Z and Mostert L, 2009. Novel Phaeoacremonium species associated with Petri disease and esca of grapevine in Iran and Spain. Mycologia101: 920-929.
Gramaje D and Armengol J. 2011. Fungal trunk pathogens in the grapevine propagation process: potential inoculum sources, detection, identification, and management strategies. Plant Disease 95(9): 1040-1055.
Hanada RE, De Souza JT, Pomella AWV, Hebbar KP, Pereira JO, Ismaiel A and Samuels GJ 2008. Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao and a potential agent of biological control. Mycological Research 112: 1335–1343.
Helander M, Ahlholm J, Sieber TN, Hinneri S and Saikkonen K, 2007. Fragmented environment affects birch leaf endophytes. New Phytologist 175: 547-553.
Jones EE, Hammond S, Blond C, Brown DS and Ridgway HJ. 2014. Interaction between arbuscular mycorrhizal fungi and rootstock cultivar on the susceptibility to infection by Ilyonectria species. Phytopathologia Mediterranea 53(3): 582-583.
Kotze C, Van nikerk J, Halleen F, Mostert L and Fourie P, 2011. Evaluation of biocontrol agents for grapevine pruning wound protection against trunk pathogen infection. Phytopathologia Mediterranea 50 (Supplement): S247-S263.
Larignon P and Dubos B, 2000. Preliminary studies on the biology of Phaeoacremonium. Phytopathologia Mediterranea 39: 184-189.
Larignon P, Fulchic R, Cere L and Dubos B, 2001. Observation on black dead arm in French vineyards. Phytopathology of Mediterrana 40: S336-S342.
Moller EM, Bahnweg G, Sanderman H and Geiger HH, 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies and infected plant tissues. Nucleic Acids Research 20: 6115–6116.
Milgroom M, 1996. Recombination and the multilocus structure of fungal populations. AnnualReview of Phytopathology 34: 457-477.
Morton L, 2000. Viticulture and grapevine declines: lessons of black goo. Phytopathologia Mediterranea 39: 59-67.
Mostert L, Groenewald JZ, Summerbell RC, Gams W and Crous PW, 2006. Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. Studies in Mycology 54: 1-115.
Mugnai L, Graniti A and Surico G, 1999. Esca (black measles) and brown-wood streaking: two old and elusive diseases of grapevines. Plant Disease 83: 404-418.
Nascimento T, Rego C and Oliveira H. 2007. Potential use of chitosan in the control of grapevine trunk diseases. Phytopathologia Mediterranea 46: 218–224.
Narmani A, Arzanlou M and Babai-Ahari A, 2015. Uneven Distribution of Mating-Type Alleles Among Togninia minima Isolates, One of the Causal Agents of Leaf Stripe Disease on Grapevines in Northwest Iran. Journal of  Phytopathology 164: 441-447.
Parsaeian M, Mirlohi AF, Rezaie AM and Khayam nekoie M, 2007. The effect of endophytic fungi on physiological characteristics and cold tolerance of two species of meadow fescue and tall fescue. Journal of Science and Technology of Agriculture and Natural Resources 10: 197-212.
Petit E and Gubler WD. 2006. Influence of Glomus intraradices on black foot disease caused by Cylindrocarpon macrodidymum on Vitis rupestris under controlled conditions. Plant Disease 90: 1481–1484.
Rooney-Latham S, Eskalen A and Gubler WD, 2001. Recovery of Phaeomoniella chlamydospora and Phaeoacremonium inflatipes from soil and grapevine tissues. Phytopatholia Mediterranea 40: S351-S356.
Serra S, Mannoni MA and Ligios V, 2007. Preliminary studies on the susceptibility of pruning wounds to contamination with fungi involved in grapevine decline disease in Italy. Phytopathologia Mediterranea 46: 115.
Surico G, Mugnai L, and Marchi G, 2006. Older and more recent observations on esca: a critical overview. Phytopathologia Mediterranea 45: S68-S86.
Turgeon BG, 1998. Application of mating type gene technology to problems in fungal biology. Annual Review of Phytopathology 36: 115-137.
Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M and Sivasithamparam K, 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology 43: 143-8.
Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW and Ghisalberti EL, 2009.  2009. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. Journal of Natural Products 72: 2032-2035.
Waite H, Gramaje D, Whitelaw-Weckert M, Torley P and Hardie WJ. 2013. Soaking grapevine cuttings in water: a potential source of cross contamination by micro-organisms. Phytopathologia Mediterranea 52(2): 359-368.
White TJ, Bruns T, Lee S and Taylor J, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315–322 In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.), PCR Protocols : A guide to Methods and Applications Academic Press, New York, USA.
Yacoub  A, Gerbore J, Magnin N, Chambon P, Dufour MC, Corio-Costet MF, Guyoneaud R and Rey P.  2016. Ability of Pythium oligandrum strains to protect Vitis vinifera against Phaeomoniella chlamydsopora, a pathogen involved in Esca, by inducing plant resistance. Biological Control 92: 7-16.
Ziedan EH and Farrag ES, 2011. Application of yeasts as biocontrol agents for controlling foliar diseases on sugar beet plants. Journal of Agricultural Technology 7(6): 1789-1799.