تنوع قدرت تهاجمی جدایه های Sclerotinia sclerotiorum و S. minor در استان آذربایجان غربی و برهمکنش اختصاصی لاین های آفتابگردان با جدایه های این بیمارگرها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد اصلاح نباتات، گروه اصلاح و بیوتکنولوژی گیاهی دانشکده کشاورزی دانشگاه ارومیه.

2 استاد، گروه اصلاح و بیوتکنولوژی گیاهی دانشکده کشاورزی دانشگاه ارومیه.

3 استادیار، گروه گیاهپزشکی دانشکده کشاورزی دانشگاه ارومیه.

چکیده

چکیده
پوسیدگی اسکلروتینیایی یقه ساقه و ساقه که توسط قارچ­های Sclerotinia sclerotiorum و S. minor ایجاد می­شود، یکی از بیماری­های مخرّب و مهم آفتابگردان است. استفاده از ارقام مقاوم به عنوان مهم­ترین روش کنترل این بیماری در نظر گرفته می­شود، ولی بکارگیری و توسعه­ی این ارقام، مستلزم وجود اطلاعاتی در زمینه­ی قدرت تهاجمی بیمارگر در منطقه و برهمکنش جدایه­های قارچ با ژنوتیپ­های میزبان است. در این تحقیق ابتدا قدرت تهاجمی 15 جدایه S. sclerotiorum و 14 جدایه S. minor جمع­آوری شده از مزارع آفتابگردان در مناطق مختلف استان آذربایجان غربی، روی رقم فرّخ بررسی شد. قدرت تهاجمی جدایه­های S. sclerotiorum از کم تا زیاد متغیر بود ولی تنوع قدرت تهاجمی کمی در بین جدایه­های S. minor مشاهده شد و اغلب آنها بسیار مهاجم بودند. سپس برهمکنش بین سه جدایه منتخب از هر گونه قارچ و 40 لاین آفتابگردان مورد بررسی قرار گرفت. مقاومت اختصاصی جدایه نسبت به دو بیمارگر در بعضی از لاین­های مورد بررسی شناسایی گردید و دو لاین 15031 و ENSAT-699 نسبت به هر سه جدایه S. minor مقاوم بودند. در بین لاین­های مقاومی که در این تحقیق شناسایی شد، لاین ایرانی 110 با مقاومت به دو جدایه از هر کدام از دو گونه بیمارگر و نیز میانگین آلودگی کلّ (44/79%) کم، جزو مقاوم­ترین لاین­ها بود. از منابع مقاومت جدید که در این تحقیق شناسایی شد، می­توان در برنامه­های به­نژادی آفتابگردان استفاده کرد و با ترکیب مقاومت­های اختصاصی جدایه، ارقامی با طیف مقاومت وسیع نسبت به هر دو بیمارگر ایجاد نمود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Aggressiveness Diversity of Sclerotinia sclerotiorum and S. minor Isolates in West Azarbaijan Province and Specific Interaction of Sunflower Lines with the Isolates of these Pathogens

نویسندگان [English]

  • Khadijeh Moosa Kalifani 1
  • Reza Darvishzadeh 2
  • Masoud Abrinbana 3
1 Former MSc Student, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University.
2 Professor, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University.
3 3Assisstant Professor, Department of Plant Protection, Faculty of Agriculture, Urmia University.
چکیده [English]

Abstract
Sclerotinia basal stem and stem rot, caused by Sclerotinia sclerotiorum and S. minor, is one of the most devastating diseases of sunflower. The use of resistant cultivars is considered as the most important method to control this disease; however, the employment and development of these cultivars require information on the aggressiveness of the pathogen in the region and interaction of fungal isolates with host genotypes. In this research, aggressiveness of 15 S. sclerotiorum and 14 S. minor isolates collected from sunflower fields in different regions of West Azarbaijan province was initially studied on the cultivar Farrokh. Aggressiveness of S. sclerotiorum isolates ranged from low to high, however, low aggressiveness diversity was observed among S. minor isolates and most of them were highly aggressive. Interactions between three isolates of each fungal species and 40 sunflower lines were then evaluated in controlled condition. Isolate-specific resistances to the pathogens were identified in some studied lines and the two lines, 15031 and ENSAT-699, were resistant to the three isolates of S. minor. Among the resistant lines identified in this study, the Iranian line ‘110’ with resistance to two isolates of each of the pathogens and with low mean infection (79.44%) was among the most resistant lines. The new sources of resistance identified in this study could be used in sunflower breeding programs to develop cultivars with broad spectrum resistance to both pathogens.
 

کلیدواژه‌ها [English]

  • Keywords: Isolate-specific resistance
  • Line × isolate interaction
  • Oily sunflower
  • Partial resistance
  • Sclerotinia basal stem rot
منابع
احمدی ک، قلی­زاده ح، عبادزاده ح، حاتمی ف، فضلی استربق م، حسین­پور ر، کاظمیان آ و رفیعی م، 1395. آمارنامه کشاورزی سال زراعی 1395-1394، جلد اوّل: محصولات زراعی. وزارت جهاد کشاورزی، معاونت برنامه­ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات.
ارشاد ج، 1388. قارچ­های ایران. موسسه تحقیقات گیاه­پزشکی کشور.
فرخی،ا، خدابنده ا، دانشیان ج و رحمانپور س، ۱۳۸۹. هیبرید فرخ، پیشاهنگ نسل جدید هیبریدهای ایرانی آفتابگردان. سومین سمینار بین المللی دانه های روغنی و روغنهای خوراکی، تهران، کانون هماهنگی دانش و صنعت دانه های روغنی.
Abrinbana M, Mozafari J, Shams-bakhsh M and Mehrabi R, 2012. Resistance spectra of wheat genotypes and virulence patterns of Mycosphaerella graminicola isolates in Iran. Euphytica, 186(1): 75–90.
Amoozadeh M, Darvishzadeh R, Davar R, Abdollahi-Mandoulakani B, Haddadi P and Basirnia A (2015). Quantitative trait loci associated with isolate specific and isolate non-specific partial resistance to Sclerotinia sclerotiorum in sunflower. Journal of Agricultural Science and Technology, 17: 213-226.
Anderson JB and Kohn LM, 1995. Clonality in soilborne, plant-pathogenic fungi. Annual Review of Phytopathology, 33: 369–391.
Atallah Z K, Larget B, Chen X, and Johnson DA, 2004. High genetic diversity, phenotypic uniformity, and evidence of outcrossing in Sclerotinia sclerotiorum in the Columbia Basin of Washington State. Phytopathology, 94(7): 737–742.
Attanayake RN, Tennekoon V, Johnson DA, Porter L, del Río-Mendoza L, Jiang D and Chen W, 2014. Inferring outcrossing in the homothallic fungus Sclerotinia sclerotiorum using linkage disequilibrum decay. Heredity 113(4): 353–363.
Attanayake RN, Porter L, Johnson DA and Chen W, 2012. Genetic and phenotypic diversity and random association of  DNA markers of isolates of the fungal plant pathogen Sclerotinia sclerotiorum from soil on a fine geographic scale. Soil Biology and Biochemistry, 55: 28–36.
Barari H, Dalili SA and Badalian SM, Mycelial compatibility grouping and aggressiveness of Sclerotinia sclerotiorum on different hosts in north of Iran. Jordan Journal of Agricultural Sciences, 10(1): 45–57.
Castaño F, Vear F and Labrouhe DT, 1993. Resistance of sunflower inbred lines to various forms of attack by Sclerotinia sclerotiorum and relations with some morphological characters. Euphytica, 68(1): 85–98.
Chattopadhyay C, Kolte SJ and Waliyar F, 2016. Diseases of Edible Oilseed Crops. CRC Press.
Davar R, Darvishzadeh R and Majd A, 2011. Genotype-isolate interaction for resistance to Sclerotinia sclerotiorum in sunflower. Phytopathologia Mediterranea, 50(3): 442–449.
Davar R, Darvishzadeh R, Majd A,Ghosta Y and Sarrafi A, 2010. QTL mapping of partial resistance to basal stem rot in sunflower using recombinant inbred lines. Phytopathologia Mediterranea, 49(3): 330–341.
Degener J, Melchinger AE, Gumber RK and Hahn V, 1998. Breeding for Sclerotinia resistance in sunflower: A modified screening test and assessment of genetic variation in current germplasm. Plant Breeding, 117(4): 367–372.
Ekins MG, Aitken EAB and Goulter K, 2002. Carpogenic germination of Sclerotinia minor and potential distribution in Australia. Australasian Plant Pathology, 31(3): 259–265.
Ekins MG, Aitken EAB and Goulter K, 2007. Aggressiveness among isolates of Sclerotinia sclerotiorum from sunflower. Australasian Plant Pathology, 36(6): 580–586.
Godoy M, Castaño F, Ŕe J and Rodríguez R, 2005. Sclerotinia resistance in sunflower: I. Genotypic variations of hybrids in three environments of Argentina. Euphytica, 145(1): 147–154.
Gomes EV, do Nascimento LB, de Freitas MA, Nasser LCB and Petrofeza S, 2011. Microsatellite markers reveal genetic variation within Sclerotinia sclerotiorum populations in irrigated dry bean crops in Brazil. Journal of Phytopathology, 159(2): 94–99.
Hahn V, 2002. Genetic variation for resistance to Sclerotinia head rot in sunflower inbred lines. Field Crops Research, 77(2–3): 153–159.
Hambleton S, Walker C and Kohn LM, 2002. Clonal lineages of Sclerotinia sclerotiorum previously known from other crops predominate in 1999–2000 samples from Ontario and Quebec soybean. Canadian Journal of Plant Pathology, 24(3): 309–315.
Hollowell JE, Shew BB and Isleib TG, 2003. Evaluating isolate aggressiveness and host resistance from peanut leaflet inoculations with Sclerotinia minor. Plant Disease, 87(4): 402–406.
Huang HC, 2002. Screening sunflower for resistance to sclerotinia wilt. Plant Pathology Bulletin, 11(1) 15–18.
Irani H, Javan-Nikkhah M, İbrahimov AŞ and Heydari A, 2015. Diversity of aggressiveness of Sclerotinia sclerotiorum (Lib.) de Bary populations in oil plants fields of north and northeast of Iran. Iranian Journal of Plant Pathology, 51(1): 1–9.
Karov I, Mitrev S, Maširević S and Kovacevic B, 2011. First appearance of white mold on sunflower caused by Sclerotinia minor in the Republic of Macedonia. Helia, 34(54): 19–26.
Kohli Y. and Kohn LM, 1998. Random association among allels in clonal populations of Sclerotinia sclerotiorum. Fungal Genetics and Biology, 23(2): 139–149.
Kohli Y, Morrall R, Anderson JB and Kohn LM, 1992. Local and trans-canadian clonal distribution of Sclerotinia sclerotiorum on canola. Phytopathology 82(8): 875–880.
Kohn ML, 1979. Delimitation of the economically important plant pathogenic Sclerotinia species. Phytopathology, 69(8): 881–886.
Kull LS, Pedersen WL, Palmquist D and Hartman GL, 2004. Mycelial compatibility grouping and aggressiveness of Sclerotinia sclerotiorum. Plant Disease, 88(4): 325–332.
Li M, Zhang YK, Wang K, Hou YG, Zhou HY, Jin L, Chen WD and Zhao J, 2016. First report of sunflower white mold caused by Sclerotinia minor Jagger in Inner Mongolia region, China. Plant Disease, 100(1): 211.
Marciano P, Di Lenna P and Magro P, 1983. Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiological Plant Pathology, 22(3): 339–345.
Mezler MS and Boland, 1996. Transmissible hypovirulence in Sclerotinia minor. Canadian Journal of Plant Pathology, 18(1): 19–28.
Morrall RAA, Duczek LJ and Sheard JW, 1972. Variation and correlations within and between morphology, pathologenicity and pectolytic enzyme activity in Sclerotinia from Saskatchewan. Canadian Journal of Botany, 50(4): 767–786.
Otto-Hanson L, Steadman JR, Higgins R and Eskridge KM, 2011. Variation in Sclerotinia sclerotiorum bean isolates from multisite resistance screening locations. Plant Disease, 95(11): 1370–1377.
Pascual A, Campa A, Pérez-Vega E, Giraldez R, Miklas PN and Ferreira JJ, 2010. Screening common bean for resistance to four Sclerotinia sclerotiorum isolates collected in northern Spain. Plant Disease, 94(7): 885–890.
Price K and Colhoun J, 1975. A study of variability of isolates of Sclerotinia sclerotiorum (Lib.) de Bary from different hosts. Journal of Phytopathology, 83(2): 159–166.
Riddle GE, Burpee LL and Boland GJ, 1991. Virulence of Sclerotinia sclerotiorum and S. minor on dandelion (Taraxacum officinale). Weed Science, 39(1): 109–118.
Rönicke S, Hahn V, Horn R, Gröne I, Brahm L, Schnabl H and Friedt W, 2004. Interspecific hybrids of sunflower as a source of Sclerotinia resistance. Plant Breeding, 123(2): 152–157.
Rönicke S, Hahn V and Friedt W, 2005. Resistance to Sclerotinia sclerotiorum of high oleic sunflower inbred lines. Plant Breeding, 124(4): 376–381.
Saharan GS and Mehta N, 2008. Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management. Springer Science+Business Media B.V.
Sedun FS and Brown JF, 1989. Comparison of three methods to assess resistance in sunflower basal stem rot caused by Sclerotinia sclerotiorum and S. minor. Plant Disease, 73(1): 52–55.
Talukder ZI, Seiler GJ, Song Q, Ma G and Qi L, 2016. SNP discovery and QTL mapping os Sclerotinia basal stalk rot resistance in sunflower using genotyping-by-sequencing. Plant genome, 9(3): doi:10.3835/plantgenome2016.03.0035.
Viteri DM, Otto K, Terán H, Schwartz HF and Singh SP, 2015. Use of four Sclerotinia sclerotiorum isolates of different aggressiveness, three inoculation per plant, and delayed multiple evaluations to select common beans with high levels of white mold resistance. Euphytica, 204(2): 457–472.