مقایسه سمیت گوارشی عصاره های کرفس (Apium graveolens) و علف داسی (Falcaria vulgaris) با حشره کش Bt علیه بید سیب‌زمینی، Phthorimaea operculella )

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران.

چکیده

چکیده
در این بررسی اثرات کشندگی و زیستی عصاره­ های هگزانی، اتیل­استاتی و متانولی گیاهان کرفس (Apium graveolens) و علف­ داسی (Falcaria vulgaris) از تیره چتریان با حشره ­کش Bt علیه لاروهای سن اول بید سیب­ زمینی مورد مقایسه قرار گرفت. اندام­ های هوایی گیاهان پس از خشک شدن در سایه با روش خیساندن در حلال­ های اشاره شده، عصاره­ گیری شدند. نتایج نشان داد که طی 24 ساعت، سمیت عصاره اتیل­استاتی کرفس و علف­داسی به­ترتیب با مقادیر LC50 برابر با 21/0 و 38/0 میلی­ گرم بر لیتر به­ طور معنی­ داری از بقیه عصاره­ ها و حتی Bt (84/1 میلی ­گرم بر لیتر) بیشتر بود. تاثیر کشندگی عصاره­ های هگزانی و اتیل­استاتی هر دو گیاه حتی طی 48 و 72 ساعت نیز بیشتر از Bt بود. با وجود تاثیر کمتر، عصاره­ های متانولی هر دو گیاه بیشترین میزان شیب خط دز- اثر را داشتند. بیشترین میزان پتانسیل نسبی محاسبه شده 76/69 برابر بود که در مقایسه سمیت عصاره اتیل­استاتی کرفس با Bt به­ دست آمد و نشان­ دهنده قدرت کشندگی بسیار بالای این عصاره در مقایسه با Bt بود. طبق نتایج، عصاره اتیل­استاتی هر دو گیاه در مقایسه با سایر عصاره ­ها روی آنزیم استیل ­کولین استراز لاروهای سن اول اثر مهارکنندگی قابل توجهی داشتند به­ طوری که در غلظت LC70، فعالیت این آنزیم را بین 70-60 درصد مهار کردند. درصد ظهور حشرات کامل تحت تاثیر غلظتLC70  عصاره ­های اتیل­استاتی هر دو گیاه بین 68 الی80 درصد کاهش یافت. طول دوره نشو و نمایی لاروی نیز در اثر استفاده از عصاره­ های اتیل­استاتی و متانولی هر دو گیاه در مقایسه با شاهد به ­طور متوسط هشت روز افزایش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Comparing oral toxicity of Apium graveolens and Falcaria vulgaris extracts with Bt against Phthorimaea operculella

نویسندگان [English]

  • Akram Hatami
  • Davoud Mohammadi
  • Naser Eivazian Kary
Department of Plant Protection, Azarbaijan Shahid Madani University, Tabriz-Iran.
چکیده [English]

Abstract
In this study, toxicity of hexane, ethyl acetate and methanol extracts of Apium graveolens and Falcaria vulgaris were compared with the microbial insecticide Bt against 1st instars of Phthorimaea operculella. The aerial parts of plants dried in shadow, and were extracted using the above mentioned solvents via maceration method. The results revealed that after 24 hours’ exposure, ethyl acetate extracts of both plants were significantly more toxic than other extracts with LC50 values of 0.21 and 0.38 mg/l respectively. These extracts in addition with hexane extracts also were more toxic than Bt after 48 and 72 hours. The dose-response line slopes of methanol extracts of both plants were more than other agents otherwise less toxic than them. The best relative potency calculated as 69.76 fold in comparing toxicity of Bt with ethyl acetate extract of A. graveolens which indicates the toxicant potential of this extract against PTM larvae. According to the results, Ethyl acetate extracts of both plants showed more AchE inhibitory activity in comparing with other extracts and 60-70% inhibition recorded by LC70 concentration of these extracts. Adults emergence reduced by 68-80% in LC70 concentration of ethyl acetate extracts of both plants. Life span of PTM larvae which treated with methanol and ethyl acetate extract of both plants, increased by 8 days in comparing with controls.

کلیدواژه‌ها [English]

  • Keywords: AChE Inhibitor
  • Antifeedant Effects
  • Botanical Insecticide
  • Life Span
  • Relative Potency
Referenes
 
 
Abbott, WS, 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18 (1): 265–266.
Abegunde SM, Ayodele-Oduola RO, 2015. Comparison of efficiency of different solvents used for the extraction of phytochemicals from the leaf, seed and stem bark of Calotropis procera. International Journal of Science and Research 4: 835–838.
Ahmadi K, Ebadzadeh H, Hatami F, Abdshah B, Kazemian A, 2020. Agricultural statistics (2019-2020), 1st Issue, Crops, Ministry of Agriculture-Jahad publication. 89 pp.
Ali K, Sagheer M, ul Hasan M, Rashid A, Shahid M, 2021. Bioactivity of medicinal plant extracts as toxicants and enzyme inhibitors against insect pests of stored commodities. Journal of Crop Protection 10 (1): 95–109.
Allahverdizadeh NM, Mohammadi D, 2016. Bioactivity of Marrubium vulgare and Achillea millefolium leaf extracts on potato tuber moth Phthorimaea operculella Zeller. Munis Entomology and Zoology 11 (1): 114–122.
Alvarez JM, Dotseth E, Nolte P, 2005. Potato tuberworm: a threat for Idaho potatoes. University of Idaho Extention Bulletine. http://info.ag.uidaho.edu/pdf/CIS/CIS1125.pdf. [Accessed on 4 July 2021].
Arivoli S, Tennyson S, 2013. Antifeedant activity, developmental indices and morphogenetic variations of plant extracts against Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Journal of Entomology and Zoology Studies 1 (4): 87–96.
Babri RA, Khokhar I, Mahmood Z, Mahmud S, 2012. Chemical composition and insecticidal activity of the essential oil of Anethum graveolens L. Science International 24 (4): 453–455.
Bendre R, Bagul S, Rajput J, 2018. Carvacrol: An Excellent Natural Pest Control Agent. Natural Products Chemistry and Research 6: 1–3.
Bodlakova K, Jedlicka P, Kodrik D, 2017. Adipokinetic hormones control amylase activity in the cockroach (Periplaneta americana) gut. Insect Science 24: 259–269.
Bouayad N, Rharrabe K, Ghailani NN, Jbilou R, Castañera P, et al., 2013. Insecticidal effects of Moroccan plant extracts on development, energy reserves and enzymatic activities of Plodia interpunctella. Spanish Journal of Agricultural Research 11 (1): 189–198.
Bowers WS, 1997. Phytochemical defenses targeting the insect endocrine system. Acta Botanica Gallica 144 (4): 391–400.
Breuer M, Hoste B, Loof AD, Naqvi SNH, 2003. Effect of Melia azedarach extract on the activity of NADPH-cytochrome-c reductase and cholinesterase in insects. Pesticide Biochemistry and Physiology 76: 99–103.
Capinera JL, 2020. Handbook of Vegetable Pests. 2st edition, Academic press. UK., 799 pp.
Dadang D, Fitriasari ED, Prijono D, 2009. Effectiveness of two botanical insecticide formulations to two major cabbage insect pests on field application. Journal of the International Society for Southeast Asian Agricultural Sciences 15 (1): 42–51.
Dailey A, Vuong QV, 2015. Effect of extraction solvents on recovery of bioactive compounds and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste. Cogent Food and Agriculture 1: 1–10.
Devi U, Bora D, 2017. Growth inhibitory effect of phenolic extracts of Ziziphus jujuba Mill. in dengue vector Aedes aegypti (L) in parent and F1 generation. Asian Pacific Journal of Tropical Medicine 10 (8): 787–791.
Dhawan D, Gupta J, 2017. Comparison of different solvents for phytochemical extraction potential from Datura metel Plant Leaves. International Journal of Biological Chemistry 11: 17–22.
Dhra G, Ahmad M, Kumar J, Patanjali PK, 2018. Mode of action of azadirachtin: a natural insecticide. International Research Journal of Biological Sciences 7: 41–46.
Ebadollahi A, 2013. Plant essential oils from apiaceae family as alternatives to conventional insecticides. Ecologia Balkanica 5: 149–172.
Elguea-Culebras O, Sanchez-Vioque G, Berruga R, Isabel M, David HP, et al., 2017. Antifeedant effects of common terpenes from Mediterranean aromatic plants on Leptinotarsa decemlineata. Journal of Soil Science and Plant Nutrition 17 (2): 475–485.
Ellman GL, Courtney KD, Andres V, Featherstone RM, 1961. A new and rapid colorimetric determination of Acetyl cholinesterase activity. Biochemical Pharmacology 1 (7): 88–95.
El-Wakeil NE, 2013. Botanical pesticides and their mode of action. Gesunde Pflanzen 5:125–149.
Enan E, 2001. Insecticidal activity of essential oils: octopaminergic sites of action. Comparative Biochemistry and Physiology Part C 130: 325–337.
Eze S, Echezona B, 2012. Agricultural pest control programmes, food security and safety. African Journal and Food, Agriculture, Nutrition and Development 12 (5): 6582–6592.
Furong G, Zhengue L, 2003. A method for rearing the potato tuber moth Phthorimaea operculella on potato. Kunchong Zhishi 40 (2): 187–189.
Ge HM, Zhu CH, Shi DH, Zhang LD, Xie DQ, et al., 2008. Hopeahainol A: An acetylcholinesterase inhibitor from Hopea hainanensis. Chemistry- A European Journal 14: 376–381.
Giri YP, Maharjan R, Dochen T, Nidup K, Sporleder M, et al., 2009. Efficacy of botanicals and Bacillus thuringiensis to control potato tuber moth, Phthorimaea operculella (Zeller), in potato stores in Nepal. International Society for Tropical Root Crops, 15th Triennial ISTRC Symposium, November 2-7, Lima, Peru P.163.
Göldel B, Lemic D, Bažok R, 2020. Alternatives to synthetic insecticides in the control of the Colorado potato beetle (Leptinotarsa decemlineata Say) and their environmental benefits. Agriculture 10-611.
Guerra PC, Molina IY, Yabar E, Gianoli E, 2006. Oviposition deterrence of shoots and essential oils of Minthostachys spp. (Lamiaceae) against the potato tuber moth. Journal of Applied Entomology 131 (2): 134–138.
Handa SS, Singh Khanuja SP, Longo G, Rakesh DD, 2008. Extraction technologies for medicinal and aromatic plants. United Nations Industrial Development Organization and the International Centre, for Science and High Technology, Trieste, 266 pp.
Hassanen N, Eissa AMF, Hafez SAM, Mosa EAM, 2015. Antioxidant and antimicrobial activity of celery (Apium graveolens) and coriander (Coriandrum sativum) herb and seed essential oils. International Journal of Current Microbiology and Applied Sciences 4 (3): 284–296.
Hatami A, Mohammadi D, Eivazian Kary N, 2019. Lethal effects and oviposition deterrency of Celery, Apium graveolens, and Sickleweed, Falcaria vulgaris, against the potato tuber moth, Phthorimaea operculella in laboratory conditions. Journal of Applied Research in Plant Protection 8 (4): 1–13. (In Persian with English abstract).
Hematpoor A, Liew SY, Azirun MS, Awang K, 2017. Insecticidal activity and the mechanism of action of three phenylpropanoids isolated from the roots of Piper sarmentosum Roxb. Science Reports 7:12576.
Isman MB, 2002. Insect antifeedant. The Royal Society of Chemistry 13: 152–157.
Jaberian H, Piri Kh, Nazari J, 2013. Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chemistry 136: 237–244.
Jurat-Fuentes JL, Heckel DG, Ferré J, 2021. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annual Review of Entomology 66: 121–40.
Kay IR, 2006. Testing insecticides against Phthorimaea operculella (Zeller) (Lepidoptera: Gelichiidae) using a tomato plant bioassay. Plant Protection Quarterly 21: 20–24.
Koul O, 2008. Phytochemicals and insect control: An antifeedant approach. Critical Reviews in Plant Sciences 27: 1–24.
 Kumar J, Ramlal A, Mallick D, Mishra V, 2021. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 10 (6), 1185.
Lee SH, Oh HW, Fang Y, An SB, Park DS, et al. 2014. Identification of plant compounds that disrupt the insect juvenile hormone receptor complex. Proceedings of the National Academy of Sciences 112 (6): 1733-1738.
Lengai GMW, Muthomi JW, Mbega ER, 2020. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African 7: 1–13.
Lezoul NH, Belkadi M, Habibi F, Guillén F, 2020. Extraction processes with several solvents on total bioactive compounds in different organs of three Medicinal plants. Molecules 25 (20): 4672.
López MD, Pascual-Villalobos MJ, 2010. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Industrial Crops and Products 31: 284–288.
Lucca PS, Nóbrega LHP, Alves LFA, Cruz-silva CTA, Pacheco FP, 2015. The insecticidal potential of Foeniculum vulgare Mill., Pimpinella anisum L. and Caryophillus aromaticus L. to control aphid on kale plants. Revista Brasileira de Plantas Medicinais 17: 585–591.
Maulina D, Sumitro SB, Amin M, Lestari SR, 2018.  Identification of bioactive compounds from Mirabilis jalapa L. (Caryophyllales: Nyctaginaceae) extracts as biopesticides and their activity against the immune response of Spodoptera litura F. (Lepidoptera: Noctuidae). Journal of Biopesticides 11 (2): 89 –97.
Melo ALA, Soccol VT, Soccol CR, 2016. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Critical Reviews in Biotechnology 36 (2): 317–326.
Miyazawa M, Watanabe H, Umemoto K, Kameoka H, 1998. Inhibition of acetylcholin esterase activity by essential oils of Mentha species. Journal of Agricultural and Food Chemistry 46: 3431–3434.
Nawaz H, Shad MA, Rehman N, Andaleeb H, Ulla N, 2020. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences 56: 117–129.
Nisar MS, İsmail MA, Ramzan H, Maqbool MM, Ahmed T, et al., 2021. The impact of different plant extracts on biological parameters of Housefly [Musca domestica (Diptera: Muscidae)]: Implications for Management. Saudi Journal of Biological Sciences 28: 3880–3885.
Paramasivam M, Selvi C, 2017. Laboratory bioassay methods to assess the insecticide toxicity against insect pests-A review. Journal of Entomology and Zoology Studies 5 (3): 1441–1445.
Park JH, Jeon YJ, Lee CH, Chung N, Lee HS, 2017. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou & Lu., newly recorded pest. Scintific Reports 1-6.
Pino O, Sánchez Y, Rojas MM, 2013. Plant secondary metabolites as an alternative in pest management. I: Background, research approaches and trends. Revista de Protección Vegetal 28 (2): 81–94.
Rafiee-Dastjerdi H, Mashhadi Z, Sheikhi Garjan A, 2013. Lethal and sublethal effects of abamectin and deltamethrin on potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Journal of Crop Protection 2 (4): 403–409.
Rahman AKM, Haque MH, Alam SN, Mahmudunnabi M, Dutta NK, 2014. Efficacy of microbials as insecticides for the management of tomato (Lycopersicon esculentum) fruitworm, Helicoverpa armigera (Hubner). A Scientific Journal of Krishi Foundation 12 (1): 68–74.
Rahman S, Biswas SK, Barman NC, Ferdus T, 2016. Plant extract as selective Pesticide for integrated pest management. Biotechnological Research 2 (1): 6–10.
Rattan RS, 2010. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection 29: 913–920.
Rayan MF, Byrne O, 1988. Plant- insect coevolution and inhibition of acetylcholinesterase. Journal of Chemical Ecology 14 (10): 1965–1975.
Roh JY, Choi JY, Li MS, Jin BR, Je YH, 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Journal of Microbiology and Biotechnology 17 (4): 547–559.
Rondon SI, 2010. The Potato Tuberworm: A literature review of its biology, ecology, and control. American Journal of Potato Research 87: 149–166.
Sablon L, Dickens JC, Haubruge É, Verheggen FJ, 2013. Chemical ecology of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), and potential for alternative control methods. Insects 4: 31–54.
Sagheer M, Ul-Hasan M, Najam-ul-Hassan M, Farhan M, Ahmad Khan FZ, et al., 2014. Repellent effects of selected medicinal plant extracts against Rust-Red Flour Beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Entomology and Zoology Studies 2: 107–110.
Salama HS, Salem SA, 1999. Bacillus thuringiensis and neem seed oil (Azadirachta indica) effects on the potato tuber moth Phthorimaea operculella Zeller in the field and stores. Archives of Phytopathology and Plant Protection 33: 73–80.
Sanchis V, Bourguet D, 2008. Bacillus thuringiensis: applications in agriculture and insect resistance management-A review. Agronomy for Sustainable Development 28: 11–20.
Sansinenea E, 2012. The Role of entomopathogenic Bacillus thuringiensis: is it only insect pathogen? Biochemistry and Pharmacology 1 (7): 1–2.
Scapinello J, Oliveira JV, Chiaradia LA, Junior OT, Niero R, et al., 2014. Insecticidal and growth inhibiting action of the supercritical extracts of Melia azedarach on Spodoptera frugiperda. Revista Brasileira de Engenharia Agrícola e Ambiental 18 (8): 866–872.
Shafaghat A, 2011.Volatile oil constituents and antibacterial activity of different parts of Falcaria vulgaris Bernh. growing wild in two localities from Iran. Natural Products Research 25: 368–373.
Sharaby A, Abdel Rahman H, Abdel-Aziz S, Moawad S, 2014. Natural plant oils and terpenes as protector for the potato tubers against Phthorimaea operculella infestation by different application methods. Ecologia Balkanica 6 (1): 45–59.
Shivanandappa T, Rajashekar Y, 2014. Mode of action of plant-derived natural insecticides. In: Singh D. (ed). Advances in Plant Biopesticides. Springer, New Delhi. Pp. 323-345.
Singh K, Singh DK, 2000. Toxicity to the snail Limnaea acuminata of plant-derived molluscicides in combination with synergists. Pest Management Science 56: 889–898.
Smith GH, Roberts JM, Pope TW, 2018. Terpene based biopesticides as potential alternatives to synthetic insecticides for control of aphid pests on protected ornamentals. Crop Protection 110:  125–130.
Sorour MA, Hassanen NHM, Ahmed MHM, 2015. Natural antioxidant changes in fresh and dried celery (Apium graveolens). American Journal of Energy Engineering 3 (2-1): 12–16.
Souto AL, Sylvestre M, Tölke ED, Tavares JF, Barbosa-Filho JM, et al., 2021. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: prospects, applications and challenges. Molecules 26 (16): 1–34.
Sporleder MM, Kroschel J, 2013. Efficacy of botanicals and Bacillus thuringiensis to control potato tuber moth, Phthorimaea operculella (Zeller), in potato storage in Nepal. Nepal Agricultural Research Journal 13: 40–47.
Taha-Salaime L, Lebedev G, Abo-Nassar J, Marzouk S, Inbar M, et al., 2020. Activity of Ajuga iva extracts against the African cotton leafworm Spodoptera littoralis. Insects 11: 1–13.
Tatun N, Vajarasathira B, Tungjiyvitayakol J, Sakurai S, 2014. Inhibitory effects of plant extracts on growth, development and α-amylase activity in the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae). European Journal of Entomology 111 (2): 181–188.
Tayoub G, Alorfi M, Ismail H, 2016. Fumigant toxicities of essential oils and two monoterpenes against potato tuber moth (Phthorimaea operculella Zeller). From Botanical to Medical Research 62 (4): 82–96.
Tian X, Li Y, Hao N, Su X, Du J, et al., 2020. The antifeedant, insecticidal and insect growth inhibitory activities of triterpenoid saponins from Clematis aethusifolia Turcz against Plutella xylostella (L.). Pest Management Science 77: 455–463.
 Ul Hassan SZ, MilitkyJ, 2012. Acetylcholinesterase based detection of residual pesticides on cotton. American Journal of Analytical Chemistry 3: 93–98.
Umar MI, Javeed A, Ashraf M, Riaz A, Mukhtar MM, et al., 2013. Polarity-based solvents Extraction of Opuntia dillenii and Zingiber officinale for in vitro antimicrobial activities. International Journal of Food Properties 16: 114–124.
Walia S, Saha S, Rana VS, 2014. Phytochemical pesticides. In: Singh D (ed). Advances in Plant Biopesticides. Springer, India, pp 295–322.
Wawrzyniak M, Lamparski R, 2006. Effect of Umbelliferae (Apiaceae) plant water extracts on Colorado potato beetle (Leptinotarsa decemlineata Say) feeding and development. Electronic Journal of Polish Agricultural Universities 9 (4): 1–12.
Wu K, Li S, Wang J, Ni Y, Huang W, et al., 2020. Peptide hormones in the insect midgut. Frontiers in Physiology 11: 1–10.
Wu K, Yang B, Huang W, Dobens L, Song H, Ling E, 2016. Gut immunity in Lepidopteran insects. Developmental and Comparative Immunology 64: 65–74.
You CX, Guo SS, Zhang WJ, Yang K, Wang CF, et al., 2015. Chemical constituents and activity of Murraya microphylla essential oil against Lasioderma serricorne. Natural Product Communications 10 (9): 1635–1638.