سازگاری دو گونه نماتود بیمارگر حشرات، Steinernema carpocapsae و Steinernema feltiae با حشره‌کش سایپرمترین علیه کرم برگخوار چغندرقند Spodoptera exigua

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

چکیده

چکیده
کرم برگخوار چغندر قند Spodoptera exigua یکی از مهم‌ترین آفات پلی‌فاژ چغندرقند با پراکنش جهانی می‌باشد. با توجه به صدمات جبران ناپذیر اغلب آفت‌کش‌های شیمیایی، استفاده از روش‌های کنترل امن‌تر در مدیریت این آفت توصیه می‌شود. این مطالعه با هدف بررسی سازگاری دو گونه نماتود بیمارگر حشرات، Steinernema carpocapsae و S. feltiae با حشره‌کش سایپرمترین علیه لاروهای کرم برگخوار چغندرقند انجام گرفت. تاثیر نماتودهای بیمارگر حشرات و سایپرمترین بر لاروهای شش روزه کرم برگخوار چغندر قند به‌ترتیب با روش تماسی و گوارشی مورد ارزیابی قرار گرفت. مقادیر برآورد شده LC50 برای نماتود S. carpocapsae و S. feltiae به‌ترتیب 63/6 و 41/4 لارو آلوده کننده به ازای هر لارو (IJ/Larvae) و برای حشره‌کش سایپرمترین 4/465 پی‌پی‌ام بدست آمد. برای بررسی تاثیر تلفیق دو عامل، دو غلظت 160 و320 پی‌پی‌ام از حشره‌کش سایپرمترین و غلظت‌های دو، چهار و هشت IJ/Larvae از نماتودهای بیمارگر حشرات به‌صورت تلفیق با یکدیگر علیه لاروهای شش روزه کرم برگخوار چغندرقند مورد ارزیابی قرار گرفتند. نتایج نشان داد علیرغم تاثیر منفی سایپرمترین بر روی نماتودهای بیمارگر مورد بررسی، تلفیق غلظت 160 پی‌پی‌ام سایپرمترین با دو IJ/Larvae نماتود S. carpocapsae و تلفیق دو غلظت 160 و 320 پی‌پی‌ام سایپرمترین با دو IJ/Larvae گونه S. feltiae اثر سینرژیستی در مرگ و میر آفت نشان دادند. همچنین مشخص شد، با افزایش زمان در معرض قرارگیری با سایپرمترین به تنهایی و یا در تلفیق با نماتودهای بیمارگر، میزان مرگ و میر لاروهای کرم برگخوار چغندرقند افزایش یافت در حالی که این اثر افزایشی درخصوص نماتودهای بیمارگر به تنهایی پس از 48 ساعت ثابت و تغییری نشان نداد.

کلیدواژه‌ها


عنوان مقاله [English]

Compatibility of Steinernema carpocapsae and Steinernema feltiae with cypermethrin against the beet armyworm Spodoptera exigua

نویسندگان [English]

  • Hajar Shargi
  • Naser Eivazian Kary
  • Davoud Mohammadi
Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz-Iran
چکیده [English]

Abstract
The beet armyworm, Spodoptera exigua, is one of the most important polyphagous ubiquitous pests of the sugar beet. Because of adverse effects of conventional pesticides, introduction of new safe control methods in beet army worm management is essential. The aim of this study was evaluating compatibility of two EPN species, Steinernema carpocapsae and S. feltiae with cypermethrin against beet army worm larvae. Contact and oral toxicity of EPNs and cypermethrin was evaluated against six days old beet armyworm larvae. The recorded LC50 values of S. carpocapsae and S. feltiae were 6.63 and 4.41 IJ/Larvae, respectively. This value for cypermethrin was 465.4 ppm. Combination effects were tested at three concentrations of EPNs including 2, 4, and 6 IJs/Larvae and 160 and 320 ppm of cypermethrin. Nevertheless, the negative effect of cypermethrin on EPNs, synergistic effects on larvae mortality were recorded at combination treatments 160 ppm Cyp+2 IJs/Larvae EPNs, similar effect was also recorded at treatment contained 320 ppm cypermethrin and same level of IJs of S. feltiae. Larvae mortality was enhanced by increasing the exposure time to cypermethrin and also in combination with EPNs. This increasing trend was also recorded for 48 hours of post-exposure to EPNs and then the curve became plateau.

کلیدواژه‌ها [English]

  • Antagonistic
  • Beet army worm
  • Steinernema
  • Sub-lethal doses
  • Synergistic
References
Abbott WS, 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267.
Ahmad M, Arif MI, 2010. Resistance of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) to endosulfan, organophosphorus and pyrethroid insecticides in Pakistan. Crop Protection 29: 1428–1433.
Alonso V, Nasrolahi S, Dillman AR, 2018. Host-specific activation of entomopathogenic nematode infective juveniles. Insects 9(59): 1–10.
Amizadeh M, Hejazi MJ, Niknam G, Askari-saryazdi G, 2019. Interaction between the entomopathogenic nematode, Steinernema feltiae and selected chemical insecticides for management of the tomato leaf miner, Tuta absolute. 709–721.
Bajc N, Drzaj U, Trdan S, Laznik Z, 2017. Compatibility of acaricides with entomopathogenic nematodes (Steinernema and Heterorhabditis). Nematology 19: 891–898.
Blümel S, Matthews GA, Grinstein A, Elad Y, 1999. Pesticides in IPM: selectivity, side-effects, application and resistance problems. In: Albajes R, Gullino ML, van Lenteren JC,  Elad Y, (eds.), Integrated Pest and Disease Management in Greenhouse Crops, pp:150–167.
Caccia MG, Valle ED, Doucet ME, Lax P, 2014. Susceptibility of Spodoptera frugiperda and Helicoverpa gelotopoeon (Lepidoptera: Noctuidae) to the entomopathogenic nematode Steinernema diaprepesi (Rhabditida: Steinernematidae) under laboratory conditions. Chilean Journal of Agricultural Research 74(1): 123–126.
Capinera JL, 2001. Handbook of Vegetable Pests. Academic Press, San Diego. 729 pp.
Chavan SN, Somasekhar N, Katti G, 2018. Compatibility of entomopathogenic nematode Heterorhabditis indica (Nematoda: Heterorhabditidae) with agrochemicals used in the rice ecosystem. Journal of Entomology & Zoology Studies 6: 527–532.
Cuthbertson AGS, Head J, Walters KFA, Murray AWA, 2003. The integrated use of chemical insecticides and the entomopathogenic nematode, Steinernema feltiae, for the control of sweet potato whitefly, Bemisia tabaci. Nematology 5: 713–720.
del Pino FG, Jove M, 2005. Compatibility of entomopathogenic nematodes with Fipronil, Journal of Helminthology 79: 333–337.
Dhawan AK, Singh S, Kumar S, 2009. Integrated pest management (IPM) helps reduce pesticide load in cotton. Journal of Agricultural Sciences and Technology 11: 599–611.
 Dhiman A, Seth RK, 2012. Compatibility of entomopathogenic nematode, Steinernema glaseri with cypermethrin. Indian Journal of Entomology 74:16–3.
Eivazian Kary N, Sanatipour Z, Mohammadi D, Koppenhöfer AM, 2018. Developmental stage affects the interaction of Steinernema carpocapsae and abamectin for the control of Phthorimaea operculella (Lepidoptera, Gelechidae). Biological Control 122: 18–23.
El-Ashry RM, Ali MA, Ali AA, 2020. The joint action of entomopathogenic nematodes mixtures and chemical pesticides on controlling Helicoverpa armigera (Hübner). Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control 12(1): 101–116.
El-Wakeil N, Gaafar N, Sallam A, Volkmar C, 2013. Side effects of insecticides on natural enemies and possibility of their integration in plant protection strategies. In Insecticides, Development of Safer and More Effective Technologies; InTechOpen: London, UK, pp. 1–56.
Glazer I, Alekseev E, Samish M, 2001. Factors affecting the virulence of entomopathogenic nematodes to engorged female Boophilus annulatus Ticks. The Journal of Parasitology 87 (4): 808–812.
Hara AH, Kaya HK, 1983. Toxicity of selected organophosphate and carbamate pesticides to infective juveniles of the entomogenous nematode Neoplectana carpocapsae (Rhabditida: Steinernematidae). Environmental Entomology 12: 496–501.
Hassani-Kakhki M, Karimi J, Hosseini M, 2013. Efficacy of entomopathogenic nematodes against potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae) under laboratory conditions, Biocontrol Science and Technology 23: 146–159.
Head J, Walters KFA, Langton S, 2000. The compatibility of the entomopathogenic nematode, Steinernema feltiae, and chemical insecticides for the control of the South American leaf miner, Liriomyza huidobrensis, BioControl 45: 345–353.
Jagodič A, Trdan S, Laznik Z, 2019. Entomopathogenic nematodes: can we use the current knowledge on belowground multitrophic interactions in future plant protection programmes? – Review. Plant Protection Sciences 55: 243–254.
Khan RR, Rameesha A, Abid Ali A, Arshad M, Majeed S, et al. 2018. Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) and the biocide, spinosad for mitigation of the armyworm, Spodoptera litura (F)(Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control 28:1–8.
Koppenhöfer AM, Brown IM, Gaugler R, Grewal PS, Kaya HK, et al. 2000. Synergism of entomopathogenic nematodes and imidacloprid against white grubs: greenhouse and field evaluation. Biological Control 19:245–251.
Koppenhöfer AM, Cowles RS, Cowles EA, Fuzy EM, Baumgartener L, 2002. Comparison of neonicotinoid insecticides as synergists for entomopathogenic nematodes. Biological Control 24: 90–97.
Koppenhöfer AM, Kaya HK, 2001. Entomopathogenic nematodes and insect pest management. In: Advances in Biopesticide Research, Vol. 2 (O. Koul, (Ed.), Harwood Academic Publishers, Amsterdam, The Netherlands. Pp: 277–305.
Laznik Z, Trdan S, 2014. The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Management Sciences 70: 784–789.
Laznik Z, Vidrih M, Trdan S, 2012. The effects of different fungicides on the viability of entomopathogenic nematodes Steinernema feltiae (Filipjev), S. carpocapsae Weiser, and Heterorhabditis downesi Stock, Griffin & Burnell (Nematoda: Rhabditida) under laboratory conditions. Journal of Agricultural Research 72: 62–67.
McMullen JG, Stock SP, 2014. In vivo and in vitro rearing of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae). Journal of Visualized Experiments 91: 1–7.
Morton A, del Pino FG, 2008. Effectiveness of different species of entomopathogenic nematodes for biocontrol of the Mediterranean flatheaded rootborer, Capnodis tenebrionis (Linne) (Coleoptera: Buprestidae) in potted peach tree. Journal of Invertebrate Pathology 97: 128–133.
Musser FR, Nyrop JP, Shelton AM, 2006. Integrating biological and chemical controls in decision making: European corn borer (Lepidoptera: Crambidae) control in sweet corn as an example. Journal of Economic Entomology 99: 1538–1549.
Negrisoli AS, Garcia MS, Negrisoli B, Bernardi, D. da Silva A, 2010a. Efficacy of entomopathogenic nematodes (Nematoda: Rhabditida) and insecticide mixtures to control Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) in corn crops. Crop Protection 29: 677–683.
Negrisoli AS, Garcia MS, Negrisoli CRCB, 2010b. Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions. Crop Protection 29: 545–549.
Özdemir E, İnak E, Evlice E, Laznik Z, 2020. Compatibility of entomopathogenic nematodes with pesticides registered in vegetable crops under laboratory conditions. Journal of Plant Diseases & Protection 127: 529–535.
Pelizza SA, Schalamuk S, Simón MR. Stenglein SA, Pacheco-Marino SG, et al. 2018. Compatibility of chemical insecticides and entomopathogenic fungi for control of soybean defoliating pest, Rachiplusia nu. Revista Argentina de Microbiología 50: 189–201.
Peters A, 2003. Pesticides and entomopathogenic nematodes - current status and future work. IOBC/wprs Bulletin 26:107–110.
Sabino PHS, Sales FS, Guevara EJ, Moino A, Filgueiras CC, 2014. Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with insecticides used in the tomato crop. Nematoda 1: e03014. http://dx.doi.org/10.4322/nematoda.03014.
Salgado-Morales R, Martínez-Ocampo F, Obregón-Barboza V, Vilchis-Martínez K, Jiménez-Pérez A, et al., 2019. Assessing the pathogenicity of two bacteria isolated from the entomopathogenic nematode Heterorhabditis indica against Galleria mellonella and some pest insects. Insects 10(83): 1–14.
Sanjta S, Mehta PK, Chandel RS, 2020. Interaction effects of entomopathogenic nematodes and insecticides for the management of grubs of Holotrichia longipennis and Brahmina coriacea. Journal of Environmental Biology 41: 637–643.
Shapiro-Ilan DI, Gouge DH, Piggott SJ, Fife JP, 2006. Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological Control 38: 124–133.
Singh P, 1977. Artificial diets for insects, mites, and spiders. IFI/Plenum. 594 PP.
Sobhy HM, Abdel-Bary NA, Harras FA, Faragalla FH, Husseinen HI, 2020. Efficacy of entomopathogenic nematodes against Spodoptera littoralis (Boisd.) and Agrotis ipsilon (H.) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control 30: 1–8.
Su J, Sun XX, 2014. High level of metaflumizone resistance and multiple insecticide resistance in field populations of Spodoptera exigua (Lepidoptera: Noctuidae) in Guangdong Province, China. Crop Protection 61: 58–63.
Ulu TC, Sadic B, Susurluk IA, 2016. Effects of different pesticides on virulence and mortality of some entomopathogenic nematodes. Invertebrate Survival Journal 13:111–115.
Vashisth S, Chandel YS, Sharma PK, 2013. Entomopathogenic nematodes-A review. Agricultural Reviews 34 (3): 163-175.
Viteri DM, Linares AM, Flores L, 2021. Use of the entomopathogenic nematode Steinernema carpocapsae in combination with low-toxicity insecticides to control fall armyworm (Lepidoptera: Noctuidae) larvae. Florida Entomologist 101(2): 327–329.
White GF, 1927. A method for obtaining infective nematode larvae from cultures. Science 66: 302–303.
Yadav S, Patil J, Sharma HK, 2017. Bio-efficacy of Steinernema carpocapsae against Spodoptera litura under laboratory condition. International Journal of Pure & Applied Biosciences 5 (2): 165–172.
Yan X, Moens M, Han R, Chen S, Clercq PD, 2012. Effects of selected insecticides on osmotically treated entomopathogenic nematodes. Journal of Plant Diseases and Protection 119 (4): 152–158.
Yan X, Shahid Arain M, Lin Y, Gu X, Zhang L, et al, 2020. Efficacy of entomopathogenic nematodes against the tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Journal of Economic Entomology 113(1): 64–72.
Zeinolabedin Fard N, Abbasipour H, Saeedizadeh A, Karimi J, 2020. Laboratory assay of entomopathogenic nematodes against the elm leaf beetle, Xanthogaleruca luteola Müller (Col.: Chrysomelidae). Journal of Forest Science, 66 (12): 524−531.
Zhang P, Gao M, Mu W, Zhou C, Li XH, 2014. Resistant levels of Spodoptera exigua to eight various insecticides in Shandong, China. Journal of Pesticide Science 39(1): 7–13.
Zhong XL, Cong XP, Wang XP, Lei CL, 2011. A review of geographic distribution, overwintering and migration in Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Journal of Entomological Research Society 13(3): 39–48.