گزینش ژنوتیپ های متحمل به تنش گل جالیز Orobanche cernua در توتون های شرقی Nicotiana tabacum با استفاده از شاخص های تحمل به تنش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه تولید و ژنتیک گیاهی دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه.

2 استاد، گروه تولید و ژنتیک گیاهی دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه. استاد، پژوهشکده زیست فناوری دانشگاه ارومیه

3 دانشیار گروه تولید و ژنتیک گیاهی دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه.

4 استادیار گروه تولید و ژنتیک گیاهی دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه.

چکیده

توتون یکی از مهم‏ترین گیاهان صنعتی و اقتصادی در بسیاری از کشورهای دنیاست که عمدتاً به خاطر برداشت و جمع ­آوریِ برگ ­هایِ آن کشت می­شود. به منظور مطالعۀ پاسخ 92 ژنوتیپ توتون شرقی به تنش گل­ جالیز، آزمایشی در قالب طرح پایۀ بلوک ­های کامل تصادفی با سه تکرار تحت دو شرایط نرمال (بدون تنش گل­ جالیز) و تنش گل ­جالیز در دو سال زراعی 1386 و 1387 انجام شد. نُه شاخص شامل شاخصِ تحمل (TOL)، شاخص تنش نسبی (RSI)، میانگین به ره­وری (MP)، میانگین هارمونیک (HM)، شاخص پایداری عملکرد (YSI)، میانگین هندسی بهره­ وری (GMP)، شاخص حساسیت به تنش (SSI)، شاخصِ تحملِ تنش (STI) و شاخص عملکرد (YI) بر اساس وزن خشک برگ (عملکرد) در شرایط نرمال (Yp ) و تنش گل ­جالیز (Ys) محاسبه شدند. بالاترین میانگین وزن خشک برگ (عملکرد) تحت شرایط نرمال و تنش گل ­جالیز در ژنوتیپ ­های 40، 39 و 24 مشاهده شد. بالاترین همبستگی مثبت و معنی­دار بین وزن خشک برگ (عملکرد) در شرایط نرمال و تنش گل­ جالیز با شاخص‌های MP، HM، GMP، STI وYI  مشاهده شد. با استفاده از روش رتبه­ بندی، ژنوتیپ ­های 40، 10 و 45 به عنوان متحمل­ ترین ژنوتیپ ­ها به تنش گل­جالیز معرفی شدند. براساس نتایج نمودار بای­پلات، ژنوتیپ‌های 40، 39، 24، 19 و 4 به عنوان ژنوتیپ‌های پُرمحصول و متحمل و ژنوتیپ‌های 70، 69، 72، 67، 78، 71 و 8  به عنوان حساس‌ترین ژنوتیپ‌ها به تنش گل­ جالیز شناسایی شدند. در گروه­ بندی ژنوتیپ ­ها به روش Ward نیز ژنوتیپ­ های با عملکرد بالا و متحمل به تنش گل­ جالیز شامل ژنوتیپ‌های 40، 39، 24، 19 و 4 در یک گروه طبقه‌بندی شدند و ژنوتیپ ­های با عملکردِ پایین در شرایط نرمال و تنش گل­ جالیز و حساس به تنش گل ­جالیز شامل ژنوتیپ‌های 70 و 69 در گروه دیگر قرار گرفتند. با توجه به تنوع بالای مشاهده شده در بین ژنوتیپ­ ها از نظر واکنش به تنش گل­ جالیز، می‌توان از آنها به عنوان والدین مناسب در برنامه‌های به‌نژادی و همچنین تولید جمعیت‌های متنوع جهت شناسایی مکان‌های ژنی کنترل کننده تحمل به تنش گل­ جالیز و بررسی تغییرات بیان ژن‌های مربوط به تحمل تنش گل ­جالیز استفاده نمود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Selection of tolerant genotypes to broomrape Orobanche cernua stress in oriental tobacco Nicotiana tabacum genotypes using stress tolerance indices

نویسندگان [English]

  • Maryam Tahmasbali 1
  • Reza Darvishzadeh 2
  • Amir Fayaz Moghaddam 3
  • Hadi Alipour 4
1 PhD Student Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.
2 Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran. Professor, Institute of Biotechnology, Urmia University, Urmia, Iran
3 Associate Professor Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.
4 Assistant Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.
چکیده [English]

Abstract
Tobacco is one of the most important industrial and economic plants in many countries of the world which is cultivated mainly for harvesting and collecting its leaves. In order to study the response of 92 oriental tobacco genotypes to broomrape stress, an experiment was conducted in a randomized complete block design with three replications under normal (without broomrape) and broomrape stress conditions during 2007 and 2008 cropping seasons. Nine stress tolerance indices including tolerance index (TOL), relative stress index (RSI), mean productivity (MP), harmonic mean (HM), yield stability index (YSI), geometric mean productivity (GMP), stress susceptibility index (SSI), stress tolerance index (STI) and yield index (YI) were calculated based on leaf dry weight (yield) under normal (Yp) and broomrape stress conditions (Ys). Genotypes 24, 39 and 40 had the highest mean yield in normal and broomrape stress conditions. Yield value in stress (Ys) and non-stress (Yp) conditions were significantly and positively correlated with MP, HM, GMP, STI and YI indices. Using the ranking method, genotypes 40, 10 and 45 were introduced as the most tolerant genotypes to broomrape stress. Based on the results of biplot, genotypes 40, 39, 24, 19 and 4 were identified as high yielding and tolerant genotypes and genotypes 70, 69, 72, 67, 78, 71 and 8 as the most sensitive genotypes to broomrape stress. Grouping of genotypes by Ward method also classified high yielding and stress tolerant genotypes including genotypes 40, 39, 24, 19 and 4 in one group. Susceptible and low yield genotypes under stress and normal conditions including genotypes 70 and 69 were classified in the other group. Due to high diversity among the studied genotypes in view of response to broomrape stress, it is possible to select appropriate parents for breeding programs, produce diverse populations for identifying genetic loci controlling broomrape stress tolerance and study changes in the expression of tolerance genes. 

کلیدواژه‌ها [English]

  • Keywords: Biplot
  • Broomrape
  • Cluster analysis
  • Oriental tobacco
  • Ranking method
  • Tolerance indices
References
Abdulahi A, Mohammadi R, 2008. Evaluating the response of bread wheat genotypes to weed interference under dryland conditions. Journal of Crop Production and Processing 11(42): 93–102 (in Persian with English abstract).
Afshari R, Sabouri A, Esfahani M, Kafi Ghasemi A, 2017. Evaluation of tolerance of rice (Oryza sativa L.) genotypes using tolerance indices and biplot analysis. Iranian Journal of Field Crop Science 48)3): 843–854 (in Persian with English abstract).
Alavi SR, Darvishzadeh R, Deylami MS, Basirnia A, Pirzad  A, 2014. Evaluation of drought tolerance indices in Virginia tobacco (Nicotiana tabacum L.) genotypes. Research in Field Crop 1(2): 1–­10 (in Persian with English abstract).
Aliakbari M, Razi H, Kazemeini SA, 2014. Evaluation of drought tolerance in rapeseed (Brassica napus L.) cultivars using drought tolerance indices. International Journal of Advanced Biological and Biomedical Research 2(3): 696–705.
Baghyalakshmi K, Sarala K, Prabhakararao K, Reddy DD, 2019. Orobanche menace in crop plants: Host resistance as a potential tool to control. Journal of Pharmacognosy and Phytochemistry SP2: 93–102.
Barker E, Press M, Scholes J, Quick W, 1996. Interactions between the parasitic angiosperm Orobanche aegyptiaca and its tomato host: growth and biomass allocation. New Phytologist 133(4): 637–642.
Beshagh B, Sadat Esilan K, Pezeshkpour P, 2018. Evaluation of faba bean genotypes using drought tolerance indices and multivariate statistical methods. Journal of Crop Breeding 10 (27): 1–9 (in Persian with English abstract).
Bidinger F, Mahalakshmi V, Rao GDP, 1987. Assessment of drought resistance in pearl millet (Pennisetum americanum (L.) Leeke). II. Estimation of genotype response to stress. Australian Journal of Agricultural Research 38(1)P: 49–59.
Bouslama M, Schapaugh W, 1984. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop Science 24(5): 933–937.
Bozhinova PR, 2006. Coefficients for determination of the leaf area in three Burley tobacco varieties. Journal of Central European Agriculture 7(1): 7–12.
Brandle J, Bai D, 1999. Biotechnology: uses and applications in tobacco improvement. In: Davis N, (Ed). Tobacco: Production, Chemistry and Technology. Wiley-Blackwell, Oxford, United Kingdom. Pp. 49–65.
Chaves M, Oliveira M, 2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany 55(407): 2365–2384.
Darvishzadeh R, Alavi SR, Sarafi A, 2011. Genetic variability for chlorine concentration in oriental tobacco genotypes. Archives of Agronomy Soil Science 57(2): 167–177.
Delavault P, 2015. Knowing the parasite: Biology and genetics of Orobanche. Helia 38(62): 15–29.
Etminan A, Pour-Aboughadareh A, Mohammadi R, Shooshtari L, Yousefiazarkhanian M, et al., 2019. Determining the best drought tolerance indices using artificial neural network (ANN): Insight into application of intelligent agriculture in agronomy and plant breeding. Cereal Research Communications 47(1): 170–181.
Fernandez GC, 1992. Effective selection criteria for assessing plant stress tolerance. International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress. August 13-16, Shanhua, Taiwan. Pp. 257–270.
Fischer R, Maurer R, 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research 29(5): 897–912.
Fischer R, Wood J, 1979. Drought resistance in spring wheat cultivars. III. Yield associations with morpho-physiological traits. Australian Journal of Agricultural Research 30(6): 1001–1020.
Gavuzzi P, Rizza F, Palumbo M, Campanile R, Ricciardi G, et al., 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science 77(4): 523–531.
Golparvar A, Majidi Harvan I, Ghassemi Pirbaloti E, 2003. Genetic improvement yield potential and water stress resistance in wheat genotypes (Triticum aestivum). Aridity Seasonal and Agricultural Drought 13: 13–21.
Hassani, S., Pirdashti, H., Mesbah R. Babaeian Jelodar N, 2008. Evaluation of drought tolerance indices in yield of six cultivars of Virginia tobacco (Nicotiana tabacum L.). Seed and Plant Journal 42: 129–144 (in Persian with English abstract).
Kakaei M, Zebarjadi A, Mostafaie A, Rezaeizad A, 2011. Determination of drought tolerant genotypes in Brassica napus L. based on drought tolerance indices. Journal of Crop Production 3(4): 107–124 (in Persian with English abstract).
Kamrani M, Mehraban A, Shiri M, 2018. Identification of drought tolerant genotypes in dryland wheat using drought tolerance indices. Journal of Crop Breeding 10 (28):13–26 (in Persian with English abstract).
Karimi Torki B, Hassanian Khoshro H, Bihamta MR, Moradi P, Mohammad Ali Pour Yamchi H, 2012. Evaluation of tolerance of chickpea genotypes to weed competition. Seed and Plant Production Journal 28-2(4): 471–487 (in Persian with English abstract).
Khalili M, Naghavi M R, Aboughadareh AP, Talebzadeh S J, 2012. Evaluating of drought stress tolerance based on selection indices in spring canola cultivars (Brassica napus L.). Journal of Agricultural Science 4(11): 78–85.
Koocheki AR, Yazdansepas A, Nikkhah HR, 2006. Effects of terminal drought on grain yield and some morphological traits in wheat (Triticum aestivum L.) genotypes. Iranian Journal of Crop Sciences 8(1): 14–29 (in Persian with English abstract).
Mohammaddoust Chamanabad H, Bakhshi M, Asghari A, Mohammad Nia S, 2014. Evaluation of weed tolerance and competition indices of 18 wheat genotypes. Iranian Journal of Weed Science 10(2): 155–166 (in Persian with English abstract).
Mohsenzadeh Golfazani M, Aalami A, Samizadeh HA, Shoaei Daylami M, Talesh Sasani S, 2012. Study of relationship between yield and yield components in tobacco genotype using path analysis method. Journal of Crop Breeding 4(9): 26–40 (in Persian with English abstract).
Molla Heydari Bafghi R, Baghizadeh A, Mohammadinezhad G, 2017. Evaluation of salinity and drought stresses tolerance in wheat genotypes using tolerance indices. Journal of Crop Breeding 9(23): 27–34 (in Persian with English abstract).
Müller F, Distler B, 1989. Translocation of glyphosate in the hostparasite system Vicia faba and Orobanche crenata. Progress in Orobanche research, Eberhard-Karls-Universität, Tübingen, FRG, 226, p. 233.
Parker C, Riches CR, 1993. Parasitic weeds of the world: Biology and Control. CAB International, Wallingford, United Kingdom. 332 pp.
Pour‐Aboughadareh A, Yousefian M, Moradkhani H, Moghaddam Vahed M, Poczai P, et al., 2019. iPASTIC: An online toolkit to estimate plant abiotic stress indices. Applications in Plant Sciences 7(7): p.e11278.
Rad AHS, Abbasian A, 2011. Evaluation of drought tolerance in rapeseed genotypes under non stress and drought stress conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(2): 164–171.
Rezvani Moghadam P, Mohsenzadeh R, Ahifar H, 2002. A survey of quality and chemical characteristics of six tobacco cultivars (Nicotiana tabacum). Journal of Agricultural Sciences and Natural Resources  8(4): 85–98 (in Persian with English abstract).
Rosielle A, Hamblin J, 1981. Theoretical aspects of selection for yield in stress and non-stress environment 1. Crop Science 21(6): 943–946.
Sadeghi SM, Samizadeh Lahiji H, Shoaei Deylami M, Javid F, Fatehi F, 2010. Identification of drought tolerant hybrids in virginia tobacco. Iranian Journal of Field Crop Science (Iranian Journal of Agricultural Sciences) 41(4): 791–802 (in Persian with English abstract).
Seyedi SJ, Nabipour AR, Vazan S, 2013. Defining selection indices for drought tolerance in chickpea under terminal drought stresses. Journal of Crop Breeding 5 (11): 98–114 (in Persian with English abstract).
Soleimani A, Bihamta M R, Peyghambari S A, Maali Amiri R, 2019. Evaluation of late season drought in barley genotypes using some drought tolerance indices. Journal of Crop Breeding 9(23): 166–176 (in Persian with English abstract).
Tabkhkar N, Rabiei B, Samizadeh Lahiji H, Hosseini Chaleshtori M, 2018. Assessment of rice genotypes response to drought stress at the early reproductive stage using stress tolerance indices. Journal of Crop Production and Processing 7 (4): 83–106 (in Persian with English abstract).
Taghizadeh N, Ranjbar G, Nematzadeh G, Ramzanimoghdam M, 2018. Evaluation of salinity tolerance in allotetraploid cotton (Gossypium sp.) genotypes, using multivariate statistical methods and stress tolerance indices at germination stage. Iranian Journal of Seed Research 4(2): 93–110 (in Persian with English abstract).
 Vij S, Tyagi AK, 2007. Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnology Journal 5(3): 361–380.