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Abstract 

Codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae) is the key insect pest of apple orchards in Iran. This study 

was conducted in the main apple-growing regions of East Azarbaijan Province to generate potential habitat suitability 

maps of C. pomonella using MaxEnt modeling and to determine the importance of vegetation index in improving the 

accuracy of these models. Field surveys for collecting the occurrence data of codling moth were conducted during three 

growing seasons, 2017 - 2019. The activity of codling moth adult males was monitored using delta-shaped traps baited 

with female sex pheromone. Fifteen environmental variables were considered as potential predictors for estimating 

codling moth distribution. These variables were categorized into topographic, climatic, and remote sensing variables. A 

MaxEnt modeling algorithm was used to predict the distribution of codling moth. Model performance was evaluated 

using the area under the receiver operating characteristic curve (AUC). By using the topographic, climatic, and 

topographic+climatic variables, the AUC values were 0.840, 0.951, and 0.938, respectively. The model including 

normalized difference vegetation index (NDVI) had the highest AUC value (0.99), which strongly supports model 

predictive power and indicates the importance of vegetation index in codling moth distribution modeling. NDVI was the 

most contributed variable in the model followed by precipitation of September, slope, minimum temperature of May, 

and mean temperature of April. The distribution map obtained in MaxEnt provides an important tool for identifying 

potential risk zones of codling moth. This map can assist managers in forecasting and planning control measures and 

therefore, effective management of current infestations of codling moth. 
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 چکيده
ه شقبا هدف تهیه ن کاری استان آذربایجان شرقی،در مناطق اصلی سیب باشد. این مطالعههای سیب در ایران میکرم سیب آفت کلیدی باغ

های ها انجام شد. دادهدقت این مدل انت و تعیین نقش شاخص پوشش گیاهی در بهبودمکسسازی مدلبا استفاده از این آفت های بالقوه زیستگاه

آوری شدند. از تله های فرمونی برای پایش فعالیت حشرات کامل نر کرم از مناطق مورد مطالعه جمع 96-98حضور آفت طی سه فصل رشدی، 

 انت روی پراکنش کرممکس الگوریتممتغیر محیطی شامل متغیرهای اقلیمی، توپوگرافیک و سنجش از دور با استفاده از  15استفاده  شد. اثر  سیب

( ارزیابی شد. ROCها و بررسی صحت و دقت آنها با استفاده از شاخص سطح زیر منحنی مشخصه عملکرد گیرنده )عملکرد مدل بررسی شد. سیب

بود، با تلفیق این دو گروه متغیر مقدار  951/0و  840/0 به ترتیب AUCاجرا شده با استفاده از متغیرهای اقلیمی و توپوگرافیک مقدار  یاهدر مدل

AUC  مدلی که دربرگیرنده هر سه گروه متغیرهای اقلیمی، توپوگرافیک و شاخص پوشش گیاهی تفاضلی نرمال شده رسید.  938/0مدل به

(NDVIبود بیش )ین مقدار رتAUC بینی پراکنش بالقوه کرم سیب است. که نشان دهنده نقش مهم این شاخص در پیش ) را داشتNDVI ،

پراکنش کرم  بیشترین ارتباط را با وبارندگی ماه سپتامبر، شیب، حداقل دمای می و میانگین دمای آوریل به ترتیب بیشترین سهم را در مدل نهایی 

 درتواند باشد که میبه دست آمده در این مطالعه ابزار مفیدی برای تشخیص مناطق خطر بالقوه کرم سیب می نقشه پراکنش سیب داشتند.

 مدیریت این آفت مهم مورد استفاده قرار گیرد. هایآگاهی و برنامهپیش

  نیچ، نقشه خطر، مدیریت آفت، پیش آگاهی سازیپراکنش گونه، مدلکلمات کليدي: 
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Introduction 

     Codling moth, Cydia pomonella L. 

(Lepidoptera: Tortricidae) is the key insect pest of 

apple orchards in Iran. It has the potential to cause 

100% infestation in untreated apple orchards 

(Beers et al. 2003). Implementation of effective 

codling moth management programs requires 

sufficient information about its biology and 

ecology, geographic distribution, and influencing 

factors (Dminić et al. 2010). Before any attempt is 

made in the management of a pest, understanding 

the effect of each factor on the pest population 

distribution should be known. 

In recent years, methods have been developed 

to estimate distributional areas based on the 

correlations of known occurrences with 

environmental variables (Peterson & Soberón 

2012). Also, improved geographical information 

systems (GIS) and increased availability of digital 

environmental layers permit the development of 

new modeling techniques that create multivariate 

species niche models encompassing large 

geographic areas (Rotenberry et al. 2006).  

Ecological niche models (ENMs) use 

occurrence data of a species in relation to 

environmental variables to make a correlative 

model of the environmental conditions that meet a 

species' ecological requirements and predict the 

relative suitability of habitat (Warren & Seifert 

2011). So ecological niche modeling (EN) has 

become an important tool in biological, ecological, 

and entomological studies (Villordon et al. 2006). 

Generally, there are two types of ecological niche 

models: mechanistic models e.g. CLIMEX and 

correlative models e.g. MaxEnt, GARP and ENFA 

(Jiang et al. 2018).  

The mechanistic ENMs are built using 

physiological information obtained from laboratory 

or field studies, whereas the correlative ENMs 

integrate species occurrence data (presence, 

presence-absence or abundance) with spatial 

environmental variables of the study area (Kumar 

et al. 2015). Both types of models have advantages 

and disadvantages. Studies have compared the 

performance of several EN modeling algorithms to 

predict the distribution of different species and 

found that MaxEnt was the best-performing model 

using presence-only data (Richard et al. 2018).  

MaxEnt has great potential for use in 

entomological studies and can be used for several 

purposes such as determining the potential 

geographic distribution of invasive species (West 

et al. 2016), predicting the distribution of endemic 

insects in response to climate change (Urbani et al. 

2017) and managing insect vectors of pathogens 

(Sallam et al. 2016). This model integrates 

presence-only data of a species with a set of 

environmental variables and generates the 

probability of species presence or predicts local 

abundance. MaxEnt identifies areas with 

conditions that are the most similar to the current 

known occurrences of the species and ranks them 

from 0 (unsuitable) to 1 (most suitable) (Phillips 

2005). 

The choice of environmental predictors is 

fundamental for MaxEnt niche modeling. 

Predictors should measure the processes that link 

environmental conditions to species occurrence, 

and match the spatial and temporal scales at which 

such processes occur. Climatic and topographic 

data are commonly used with this modeling 

approach (Lestina et al. 2016) because this data 

can provide continuous spatial coverage, usually 

through interpolation methods (Miller & Rogan 

2007). However, some studies indicated that an 

accurate and realistic geographic distribution of 

pest species is attained by integrating vegetation 

variables, derived from remote sensing data, with 

climatic and topographic variables (Lestina et al. 

2016; Makori et al. 2017; Richard et al. 2018). 

These predictors could be more informative 

because they may explain the availability of 

resources, shelter, etc. (Leitão & Santos 2019). 

Also, the remote sensing vegetation pattern 

variables are useful additional predictors for the 

spatial distribution of species since EN models rely 

on the correlation between a habitat’s 

characteristics and the biophysical properties of the 

studied species (Richard et al. 2018).  

Identifying variables associated with the 

geographic distribution of C. pomonella is useful 
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for the suitable management of this pest to reduce 

ecological destruction and economic losses. The 

ENMs have been used to reveal the effects of 

environmental variables on the distribution of 

codling moth and estimate its potential risk on a 

global and national scale. Jiang et al. (2018) used 

MaxEnt to predict the potential global distribution 

of codling moth. Global accessibility data, apple 

yield data, elevation data, and 19 bioclimatic 

variables were used as predictors. The results 

showed that suitable habitats of codling moth are 

mainly distributed in Europe, Asia, and North 

America; and global accessibility, mean 

temperature of the coldest quarter, precipitation of 

the driest month, annual mean temperature, and 

apple yield were the most important variables 

associated with the global distribution of codling 

moths.  

In another study, MaxEnt was used to identify 

areas with the highest potential risk of codling 

moth establishment and spread in China (Zhu et al. 

2017). A total of 26 climatic, topographic, and 

anthropogenic variables were considered in the 

modeling. Human footprint, annual temperature 

range, precipitation of the wettest quarter, and 

degree days 10 C were the most important 

predictors associated with codling moth 

distribution. 

Svobodová et al. (2014) used the mechanistic 

model, CLIMEX to identify climatically favorable 

areas for European corn borer Ostrinia nubilalis 

(Hubner), European grapevine moth Lobesia 

botrana (Denis & Schiffermüller), and codling 

moth C. pomonella development and long-term 

survival in the area of southern Moravia and 

northern part of Austria during the 1803–2008 

period. The climatic parameters especially daily air 

temperature was used as a determining factor in the 

model. Besides the estimation of climatic 

suitability for the pests’ persistence in the past, 

they specified the core of the climatic niche with 

the continuing presence of the pest and concluded 

that in the case of widespread species (C. 

pomonella) the climatic core could be detected 

only if the study covers large enough area. 

Kamangar and Ranjbar Aghdam (2020) prepared a 

predictive model of codling moth phenology based 

on total efficient temperature, in Kamyaran and 

Saqez located in the Kudistan province of Iran and 

showed that the peak population of the first-

generation larvae of the winter generations is 

6634±430 GDH (Growing Degree Hours), and in 

the summer generation is 23700± 846 GDH. 

To the best of our knowledge, there is no study 

about the effect of climatic, topographic, and 

remote sensing variables, and their interactions on 

codling moth distribution and abundance at a 

landscape scale. Therefore, the objectives of this 

study were to: 1) develop potential habitat 

suitability maps of C. pomonella in East 

Azerbaijan province using MaxEnt, and 2) 

determine if remote sensing variables improve the 

accuracy of these models compared to those using 

only climatic or topographic variables. 

 

Materials and methods 

Study area 

This study was conducted in seven apple-

growing counties of East Azarbaijan Province 

including Ahar, Maragheh, Marand, Horand, 

Shabestar, Miyaneh, and Tabriz (Fig. 1). East 

Azarbaijan Province extends from 36˚ 45΄ to 39˚ 

26΄ N and from 45˚ 05΄ to 48˚ 22΄ E. Local 

climates vary across the province due to the 

differences in elevation. 

 

Species occurrence data 

Field surveys for collecting the occurrence data 

of codling moth were conducted during three 

growing seasons, 2017 - 2019. The activity of 

codling moth adult males was monitored using 

delta-shaped traps baited with female sex 

pheromone (PH-227-1RR, Russell IPM, UK). One 

trap was placed in the tree canopy at a height of 1.5 

- 1.7 m in each orchard. Spatial locations of the 

trees were saved in a hand-held GPS receiver 

(Model GPS-map 76CSx; Garmin, Olathe, Kansas) 

in the Universal Transverse Mercator (UTM) 

coordinate system with a positional accuracy of ± 3 

m. A minimum 1 km radius was established 

between neighboring sites. During the three years 
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surveys, 59 occurrence points of codling moth were identified and used to create the models.  

 
 

Figure 1. Location map of counties studied and sampling points. 

 

Environmental variables 

Fifteen environmental variables were 

considered as potential predictors for estimating 

codling moth distribution. These variables were 

categorized into topographic, climatic, and remote 

sensing variables (Table 1). 

Topographic layers were derived from a 30-m 

digital elevation map (DEM) of East Azarbaijan 

(produced by Azarpeymayesh Consulting 

Engineers). These data were analyzed in ArcGIS 

10.3.1 to create layers of the slope, aspect, 

landshape, northness, eastness, and sun index. 

Slope and aspect layers (both in degrees) were 

obtained from DEM using ArcGIS slope and 

aspect tools. Landshape layer was created by 

taking the mean elevation value (i.e., from the 

DEM) in a circle with a three-cell (90-m) radius 

around the sample point, and subtracting that value 

from the sample point elevation using ArcGIS 

10.3.1 “Raster Calculator” (Merrill et al. 2009). 

Northness and eastness were generated using 

Raster Calculator by taking the cosine and sine of 

the aspect layer, respectively (Lestina et al. 2016). 

The sun index was calculated using slope and 

aspect values as follows (Karimzadeh et al. 2014): 

Sun index = -cos (aspect) × cot (slope), when 0˚ ≤  

aspect ≤ 90˚ or ≥ 270˚ 

and 

Sun index = -cos (aspect) × tan (slope), when 90˚ < 

aspect < 270˚ 

Then, these point datasets are interpolated using 

the IDW algorithm in ArcGIS 10.3.1 to create 

raster datasets.  

Meteorological data were obtained from East 

Azarbaijan Applied Meteorological Research 

Center. These data were used to calculate the 

mean, minimum and maximum absolute 

temperatures and relative humidity (Rh), and total 

precipitation per month (April, May, June, July, 

August and September) for three years of the 

study. Then, these point datasets are interpolated 

using the inverse distance weighting (IDW) 

algorithm in ArcGIS 10.3.1 to create raster layers. 

Finally, the average of each variable was taken 

from three layers using the cell statistics tool in 

ArcGIS 10.3.1. 
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Normalized difference vegetation index (NDVI) 

was the remote sensing variable studied. 

Multispectral Landsat-8 (OLI / TIRS-2018) with 

30-m accuracy was used to produce this index. For 

this purpose, after applying radiometric and 

atmospheric corrections, a mosaic image was 

prepared for the study area. Then NDVI was 

calculated using the following formula 1 and by 

spectral indices tool of ENVI 5.3 software.  

 

1) NDVI= (Near Infrared - Red)/ (Near 

Infrared + Red) 

 

Table 1. Environmental variables used for modeling the suitable habitat of codling moth in East Azarbaijan province. 

Data Source Category Variables Description Unit  Abbreviations 

meteorological 

stations  
Climatic Mean temperature per month Degree 

Celsius 

tmean 

  Maximum absolute temperature per 

month 
Degree 

Celsius 

tmax 

  Minimum absolute temperature per 

month 

Degree 

Celsius 

tmin 

  Mean relative humidity per month  Percentage rhmean 

  Maximum absolute relative humidity 

per month 

Percentage rhmax 

  Minimum absolute relative humidity per 

month 
Percentage rhmin 

  Total precipitation per month Millimeter Precipitation 

SRTM Topographic The elevation of each cell Meter Elevation 

  The degree slope of each cell Degree Slope 

  The compass direction that the slope 

faces in each cell 
Degree Aspect 

  The relative elevation of the 

georeferenced plot to its surroundings 

Meter Landshape 

  North-south linear variable of direction 

in each cell 
Degree Northness 

  East-west linear variable of direction in 

each cell 

Degree Eastness 

  Amount of solar energy received at each 

point based on its slope and aspect 
- Sun index 

Landsat Remote sensing Difference between near-infrared 

(which vegetation strongly reflects) and 

red bands (which vegetation absorbs) 

- NDVI 

 

MaxEnt modeling 

A MaxEnt modeling algorithm was used to 

predict the distribution of codling moth because it 

is a presence-only model which is suitable for 

occurrence data in this study. To determine which 

variables are significantly related to the 

distribution of codling moth, initial models were 

run using environmental variables of climatic and 

topographic separately. The jackknife test in the 

MaxEnt was used to evaluate the influence of each 

environmental variable on the potential distribution 

of codling moth. Cross-correlation between 

variables was also performed and only one variable 

from each set of highly correlated variables 

(Pearson correlation coefficient |r| ≥ 0.75) was 

included in the models. The predictive power of 

each variable in the Jackknife test as well as their 

relationship with codling moth biology was 

considered to remove or include variables in the 

final model. After specifying the most significant 
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variables in climatic and topographic categories, 

the subsequent model was run to combine 

variables of these two categories and determine 

those that would be included in the final model. 

The NDVI index was integrated at the end to 

evaluate its importance in improving the prediction 

capability of the executed model with climatic and 

topographic variables.  

One of the limitations of presence-only data is 

sampling bias, which can lead to inaccurate 

predictions. Since the data collection in this study 

was not random, the Gaussian Kernel Density tool 

in the SDMToolbox of ArcGIS 10.3.1 was used to 

generate a bias layer to account for potential 

sampling bias (Lestina et al. 2016). Models were 

averaged across 10 replicates using the bootstrap 

procedure. In this method, 75 % of the presence 

points were randomly used to construct the model 

and the remaining 25 % were used to evaluate the 

results of the model.  

Model performance was evaluated using the 

area under the ROC curve (AUC). ROC is an 

abbreviation of “receiver operating characteristic”. 

AUC measures the probability that a random 

presence site is ranked above background (or 

pseudo-absence) points. Models with random 

predictions have an AUC value of 0.5. High-

performance models have an AUC value greater 

than 0.8 and are ideal for interpreting species-

environment relationships. 

  

Results  

MaxEnt models 

Figures 2 and 3 show the results of the 

jackknife test for the models with topographic and 

climatic variables, respectively. Blue shades show 

the individual importance of each variable when 

used in isolation, while green shades show the 

model performance when each variable is excluded 

from the model. Red shades also indicate the 

performance of the model created using all 

variables. According to the results of the jackknife 

test, cross-correlations (Tables 2 and 3) and the 

importance of variables in codling moth biology, 

two topographic variables including elevation and 

slope, 10 climatic variables including precipitation 

of September, mean relative humidity of August, 

the maximum temperature of May, June and July, 

minimum temperature of April, May, August, 

September and mean temperature of April were 

selected to include in the model. 

 

Table 2. Correlation matrix among topographic variables. Variables showing |r| ≥ ±0.75 were eliminated from the 

analyses. 

Sun index Eastness Northness Landshape Aspect Slope Elevation Variable 

      1 Elevation 

     1 0.369 Slope  

    1 0.115 0.012 Aspect  

   1 0.005 -0.014 -0.034 Landshape 

  1 0.002 -0.139 -0.050 0.021 Northness 

 1 0.020 -0.002 -0.009 0.014 0.015 Eastness 

1 0.013 0.024 0.000 0.015 0.018 -0.078 Sun index 

 

Accuracy analysis  

The AUC values of implemented models are 

presented in Table 4. By using the topographic, 

climatic, and topographic+climatic variables, the 

AUC values were 0.840, 0.951 and 0.938, 

respectively. The model including NDVI had the 

highest AUC value (0.99), which strongly supports 

model predictive power and indicates the 

importance of vegetation index in codling moth 

distribution modeling. 

. 
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Table 3. Correlation matrix among climatic variables. Variables showing |r| ≥ ±0.75 were eliminated from the analyses. 

Precipitation Rh_mean T_max T_mean T_min  Month  

    1 T_min April 

   1 0.659 T_mean  

  1 0.475 0.541 T_max  

 1 -0.024 -0.579 -0.742 Rh_mean  

1 -0.261 -0.165 0.177 0.118 Precipitation  

    1 T_min May 

   1 0.865 T_mean  

  1 0.705 0.690 T_max  

 1 -0.320 -0.164 -0.035 Rh_mean  

1 -0.631 0.285 0.183 0.079 Precipitation  

    1 T_min June 

   1 0.773 T_mean  

  1 0.797 0.488 T_max  

 1 -0.771 -0.860 -0.711 Rh_mean  

1 0.669 -0.617 -0.596 -0.638 Precipitation  

    1 T_min July 

   1 0.913 T_mean  

  1 0.901 0.821 T_max  

 1 -0.554 -0.754 -0.684 Rh_mean  

1 0.718 -0.799 -0.838 0.876 Precipitation  

    1 T_min August 

   1 0.899 T_mean  

  1 0.879 0.740 T_max  

 1 -0.835 -0.834 -0.648 Rh_mean  

1 0.880 -0.725 -0.627 -0.362 Precipitation  

    1 T_min September 

   1 0.913 T_mean  

  1 0.736 0.638 T_max  

 1 -0.532 -0.824 -0.669 Rh_mean  

1 0.828 -0.435 -0.484 -0.255 Precipitation  

 

 

 

  

Figure 2. Jackknife variable importance test of regulated gains for the model with topographic variables.   
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Figure 3. Jackknife variable importance test of regulated gains for the model with climatic variables.  

 

 

Table 4. The AUC values of models implemented in MaxEnt. 

Model No. Variables AUC value 

1 Topographic variables 0.840 

2 Climatic variables 0.951 

3 Topographic and climatic variables 0.938 

4 Topographic, climatic and remote sensing variables 0.990 

 

The importance of variables 

Determining the most important environmental 

variables affecting codling moth distribution was 

one of the objectives of this study. Figures 4 and 5 

show the Jackknife variable importance test of 

regulated gains for the models without and with the 

NDVI index, respectively. In the model without 

NDVI index, elevation, slope and minimum 
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temperature of May, and the models with NDVI 

index, NDVI, elevation, and slope were the most 

important variables affecting codling moth 

distribution.  

 

 

Figure 4. Jackknife variable importance test of regulated gains for the model with topographic+climatic variables. 

 

 

Figure 5. Jackknife variable importance test of regulated gains for the model with topographic+climatic+remote 

sensing variables. 

 

Table 5 presents the percentage contribution of 

each variable and its permutation importance in the 

models without and with NDVI. In the model 

without NDVI, the slope was the variable with the 

most contribution (31%) followed by precipitation 

of September (17.4%), mean temperature of May  

 

(16.4%) and elevation (16.3%). In the model with 

the RS variable, NDVI was the most contributed 

variable with 92.3% contribution followed by 

precipitation of September (2%), slope (1.8%), 

minimum temperature of May (1.3%) and mean 

temperature of April (1.1%). The Jackknife 



Journal of Applied Research in Plant Protection 12 (1): 27-41 (2023)                                                                                 36 

 

J Appl Res Plant Prot 

variable importance test also showed that these 

variables had higher predictive importance than 

other variables (Figures 4 and 5). 

 

Table 5. Permutation importance (percentage) of each variable in the models without and with RS variable, NDVI. 

Model Variable Percent contribution 

Model without NDVI Slope 31.0 

 Precipitation of September 17.4 

 Minimum temperature of May 16.4 

 Elevation 16.3 

 Maximum temperature of May 5.5 

 Mean RH of August 3.9 

 Maximum temperature of September 3.1 

 Maximum temperature of July 2.7 

 Mean temperature of April 2.2 

 Maximum temperature of June 0.9 

 Minimum temperature of April 0.6 

 Minimum temperature of August 0.0 

Model with NDVI NDVI 92.3 

 Precipitation of September 2.0 

 Slope  1.8 

 Minimum temperature of May 1.3 

 Mean temperature of April 1.1 

 Elevation 0.6 

 Maximum temperature of September 0.3 

 Mean RH of August 0.1 

 Minimum temperature of August 0.1 

 Maximum temperature of June 0.1 

 Maximum temperature of July 0.1 

 Maximum temperature of May 0.1 

 Minimum temperature of April 0.0 

 

Figures 6 and 7 show the response curves of the 

variables with more percentage contribution in the 

models without and with NDVI, respectively. The 

response curves indicated that the frequency of 

codling moth increased in the ranges of 0 - 7 mm 

precipitation in September, -1 – 2 degrees of slope, 

3 – 6.1 ˚C of the minimum temperature of May, 

200 – 1300 m of elevation, 5 – 7.9 ˚C of the mean 

temperature of April and 0.2 – 0.62 NDVI.  

Predicted distribution map 

Figures 6 and 7 show the predicted distribution 

maps of codling moth using models without and 

with NDVI. Warmers colors (red) and cooler 

colors (blue) on the maps indicate the more 

suitable and less suitable areas, respectively. High 

environmental suitability was predicted for areas 

within the northern portions of East Azarbaijan 

province in the model created without NDVI (Fig. 

8). The predicted suitable area was significantly 

restricted with the addition of the RS variable (Fig. 

9).
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Figure 6. Codling moth response curves from the top contributing variables in the MaxEnt model with topographic and 

climatic variables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Codling moth response curves from the top contributing variables in the MaxEnt model with topographic, 

climatic and remote sensing variables. 
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Figure 8. Predicted distribution map for codling moth using bioclimatic and topographic variables. Blue color indicates 

less suitable sites, while red color indicates more suitable sites. 

 

 

 

Figure 9. Predicted distribution map for codling moth using bioclimatic, topographic, and remote sensing variables. 

Blue color indicates less suitable sites, while red color indicates more suitable sites. 
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Discussion 

In this study, we used the MaxEnt machine 

learning method for codling moth niche modeling 

and assessing the effect of environmental variables 

on codling moth distribution patterns. Codling 

moth occurrence data were collected from apple-

growing regions over three years. In addition to 

climatic variables, the topographic and remote 

sensing variables were also taken into account. The 

high AUC value (0.99) indicated that the model 

performed well and accurately. Predicted 

distribution areas for codling moth using 

bioclimatic and topographic variables confirmed 

with the currently known occurrence regions.   

To facilitate pest management programs, 

accurate models are needed to determine the 

potential distribution of economically important 

pests. Other studies present the global potential 

risk of distribution of codling moth using 

correlative and mechanistic niche models (Kumar 

et al. 2015; Zhu et al. 2017; Jiang et al. 2018). But, 

our study is the first on a local scale that used 

topographic and remote sensing variables along 

with climatic variables which are commonly used 

in studies. However, there are some other factors 

such as host availability that affect the potential 

distribution of codling moth which have not been 

considered in this study and should be taken into 

account in future models. 

All four models generated in our study 

accurately predicted codling moth habitat 

suitability (AUC > 0.8), but the model including 

NDVI, had the highest AUC value. Models did not 

predict suitable habitat in regions located in high 

elevations primarily because of the shorter 

photoperiod in these areas and lack of chilling 

requirement (<60 d at ≤10°C) in these areas for the 

codling moth to break diapause (Kumar et al. 

2015).  

NDVI, slope, precipitation of September, mean 

temperature of May and elevation were the top 

environmental variables associated with codling 

moth distribution. Kumar et al. (2015) and Jones et 

al. (2013) also showed a strong influence of 

elevation on the biology and distribution of codling 

moth. While Zhu et al. (2017) in studying codling 

moth establishment in China, introduced human 

footprint, annual temperature range, precipitation 

of wettest quarter, and degree days ≥10 °C as the 

most important predictors associated with codling 

moth distribution.  

In the studies, the potential global distribution 

of codling moth was studied, and different 

variables were detected as the most important 

predictors. Jiang et al. (2018) used MaxEnt to 

predict the potential global using global 

accessibility data, apple yield data, elevation data 

and 19 bioclimatic variables. Their results 

indicated that global accessibility, mean 

temperature of the coldest quarter, precipitation of 

the driest month, annual mean temperature and 

apple yield were the most important environmental 

predictors associated with the global distribution of 

codling moths. Average annual temperature and 

latitude were the main environmental variables 

associated with codling moth distribution at the 

global level in another study (Kumar et al. 2015). 

Comparing these results with the results of the 

present study indicated that different variables may 

affect the spatial distribution of codling moth on 

the local and global scales.  

Kumar et al. (2015) recommended that the 

results of niche modeling studies should be 

interpreted cautiously because niche model 

predictions may be affected by the quality of 

occurrence data, sampling bias, resolution of 

spatial data layers, species characteristics, and 

spatial autocorrelation. Phillips et al. (2004) 

showed that MaxEnt is substantially superior to the 

standard methods, performing well with fairly few 

presence data, particularly when regularization is 

employed.  They also showed that the models 

generated by MaxEnt can be easily interpreted by 

human experts, a property of great practical 

importance. 

 Apple is an economically important crop in 

East Azarbaijan Province and codling moth is the 

most destructive and economically important 

insect pest of apple. Understanding the impact of 

spatially heterogeneous environmental factors on 

the codling moth distribution is fundamental for 

the management of this pest. The results of this 
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study indicated that along with the climatic and 

topographic variables like temperature, 

precipitation, and elevation, the vegetation patterns 

at a landscape level play a key role in codling moth 

distribution. So that NDVI was identified as the 

most important contributor to the MaxEnt model 

and improved model performance. This method 

can also be used for other important agricultural 

pests of Iran. The distribution map obtained in 

MaxEnt provided an important tool for identifying 

potential risk zones of codling moth. This map can 

assist managers in forecasting and planning control 

measures and therefore, effective management of 

current infestations of codling moth. In other 

words, these distribution maps can provide 

baseline information for the development and 

implementation of effective IPM strategies. Since 

changes in climatic variables may influence 

codling moth distribution patterns, further studies 

are needed to investigate the effects of climate 

changes on codling moth distribution and biology. 
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