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Abstract

Codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae) is the key insect pest of apple orchards in Iran. This study
was conducted in the main apple-growing regions of East Azarbaijan Province to generate potential habitat suitability
maps of C. pomonella using MaxEnt modeling and to determine the importance of vegetation index in improving the
accuracy of these models. Field surveys for collecting the occurrence data of codling moth were conducted during three
growing seasons, 2017 - 2019. The activity of codling moth adult males was monitored using delta-shaped traps baited
with female sex pheromone. Fifteen environmental variables were considered as potential predictors for estimating
codling moth distribution. These variables were categorized into topographic, climatic, and remote sensing variables. A
MaxEnt modeling algorithm was used to predict the distribution of codling moth. Model performance was evaluated
using the area under the receiver operating characteristic curve (AUC). By using the topographic, climatic, and
topographic+climatic variables, the AUC values were 0.840, 0.951, and 0.938, respectively. The model including
normalized difference vegetation index (NDVI) had the highest AUC value (0.99), which strongly supports model
predictive power and indicates the importance of vegetation index in codling moth distribution modeling. NDVI was the
most contributed variable in the model followed by precipitation of September, slope, minimum temperature of May,
and mean temperature of April. The distribution map obtained in MaxEnt provides an important tool for identifying
potential risk zones of codling moth. This map can assist managers in forecasting and planning control measures and
therefore, effective management of current infestations of codling moth.
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Introduction

Codling moth, Cydia pomonella L.
(Lepidoptera: Tortricidae) is the key insect pest of
apple orchards in Iran. It has the potential to cause
100% infestation in untreated apple orchards
(Beers et al. 2003). Implementation of effective
codling moth management programs requires
sufficient information about its biology and
ecology, geographic distribution, and influencing
factors (Dmini¢ et al. 2010). Before any attempt is
made in the management of a pest, understanding
the effect of each factor on the pest population
distribution should be known.

In recent years, methods have been developed
to estimate distributional areas based on the
correlations of  known  occurrences  with
environmental variables (Peterson & Soberdn
2012). Also, improved geographical information
systems (GIS) and increased availability of digital
environmental layers permit the development of
new modeling techniques that create multivariate
species niche models encompassing large
geographic areas (Rotenberry et al. 2006).

Ecological niche models (ENMs) use
occurrence data of a species in relation to
environmental variables to make a correlative
model of the environmental conditions that meet a
species' ecological requirements and predict the
relative suitability of habitat (Warren & Seifert
2011). So ecological niche modeling (EN) has
become an important tool in biological, ecological,
and entomological studies (Villordon et al. 2006).
Generally, there are two types of ecological niche
models: mechanistic models e.g. CLIMEX and
correlative models e.g. MaxEnt, GARP and ENFA
(Jiang et al. 2018).

The mechanistic ENMs are built using
physiological information obtained from laboratory
or field studies, whereas the correlative ENMs
integrate species occurrence data (presence,
presence-absence or abundance) with spatial
environmental variables of the study area (Kumar
et al. 2015). Both types of models have advantages
and disadvantages. Studies have compared the
performance of several EN modeling algorithms to
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predict the distribution of different species and
found that MaxEnt was the best-performing model
using presence-only data (Richard et al. 2018).

MaxEnt has great potential for use in
entomological studies and can be used for several
purposes such as determining the potential
geographic distribution of invasive species (West
et al. 2016), predicting the distribution of endemic
insects in response to climate change (Urbani et al.
2017) and managing insect vectors of pathogens
(Sallam et al. 2016). This model integrates
presence-only data of a species with a set of
environmental variables and generates the
probability of species presence or predicts local
abundance. MaxEnt identifies areas with
conditions that are the most similar to the current
known occurrences of the species and ranks them
from O (unsuitable) to 1 (most suitable) (Phillips
2005).

The choice of environmental predictors is
fundamental for MaxEnt niche modeling.
Predictors should measure the processes that link
environmental conditions to species occurrence,
and match the spatial and temporal scales at which
such processes occur. Climatic and topographic
data are commonly used with this modeling
approach (Lestina et al. 2016) because this data
can provide continuous spatial coverage, usually
through interpolation methods (Miller & Rogan
2007). However, some studies indicated that an
accurate and realistic geographic distribution of
pest species is attained by integrating vegetation
variables, derived from remote sensing data, with
climatic and topographic variables (Lestina et al.
2016; Makori et al. 2017; Richard et al. 2018).
These predictors could be more informative
because they may explain the availability of
resources, shelter, etc. (Leitdo & Santos 2019).
Also, the remote sensing vegetation pattern
variables are useful additional predictors for the
spatial distribution of species since EN models rely
on the correlation between a habitat’s
characteristics and the biophysical properties of the
studied species (Richard et al. 2018).

Identifying variables associated with the
geographic distribution of C. pomonella is useful
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for the suitable management of this pest to reduce
ecological destruction and economic losses. The
ENMs have been used to reveal the effects of
environmental variables on the distribution of
codling moth and estimate its potential risk on a
global and national scale. Jiang et al. (2018) used
MaxEnt to predict the potential global distribution
of codling moth. Global accessibility data, apple
yield data, elevation data, and 19 bioclimatic
variables were used as predictors. The results
showed that suitable habitats of codling moth are
mainly distributed in Europe, Asia, and North
America; and global accessibility, mean
temperature of the coldest quarter, precipitation of
the driest month, annual mean temperature, and
apple yield were the most important variables
associated with the global distribution of codling
moths.

In another study, MaxEnt was used to identify
areas with the highest potential risk of codling
moth establishment and spread in China (Zhu et al.
2017). A total of 26 climatic, topographic, and
anthropogenic variables were considered in the
modeling. Human footprint, annual temperature
range, precipitation of the wettest quarter, and
degree days 10 C were the most important
predictors  associated with  codling moth
distribution.

Svobodova et al. (2014) used the mechanistic
model, CLIMEX to identify climatically favorable
areas for European corn borer Ostrinia nubilalis
(Hubner), European grapevine moth Lobesia
botrana (Denis & Schiffermller), and codling
moth C. pomonella development and long-term
survival in the area of southern Moravia and
northern part of Austria during the 1803-2008
period. The climatic parameters especially daily air
temperature was used as a determining factor in the
model. Besides the estimation of climatic
suitability for the pests’ persistence in the past,
they specified the core of the climatic niche with
the continuing presence of the pest and concluded
that in the case of widespread species (C.
pomonella) the climatic core could be detected
only if the study covers large enough area.
Kamangar and Ranjbar Aghdam (2020) prepared a
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predictive model of codling moth phenology based
on total efficient temperature, in Kamyaran and
Sagez located in the Kudistan province of Iran and
showed that the peak population of the first-
generation larvae of the winter generations is
6634+430 GDH (Growing Degree Hours), and in
the summer generation is 23700+ 846 GDH.

To the best of our knowledge, there is no study
about the effect of climatic, topographic, and
remote sensing variables, and their interactions on
codling moth distribution and abundance at a
landscape scale. Therefore, the objectives of this
study were to: 1) develop potential habitat
suitability maps of C. pomonella in East
Azerbaijan province using MaxEnt, and 2)
determine if remote sensing variables improve the
accuracy of these models compared to those using
only climatic or topographic variables.

Materials and methods
Study area

This study was conducted in seven apple-
growing counties of East Azarbaijan Province
including Ahar, Maragheh, Marand, Horand,
Shabestar, Miyaneh, and Tabriz (Fig. 1). East
Azarbaijan Province extends from 36° 45" to 39°
26" N and from 45° 05" to 48° 22" E. Local
climates vary across the province due to the
differences in elevation.

Species occurrence data

Field surveys for collecting the occurrence data
of codling moth were conducted during three
growing seasons, 2017 - 2019. The activity of
codling moth adult males was monitored using
delta-shaped traps baited with female sex
pheromone (PH-227-1RR, Russell IPM, UK). One
trap was placed in the tree canopy at a height of 1.5
- 1.7 m in each orchard. Spatial locations of the
trees were saved in a hand-held GPS receiver
(Model GPS-map 76CSx; Garmin, Olathe, Kansas)
in the Universal Transverse Mercator (UTM)
coordinate system with a positional accuracy of + 3
m. A minimum 1 km radius was established
between neighboring sites. During the three years
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surveys, 59 occurrence points of codling moth

were identified and used to create the models.

‘Miyanety 'L

PR

Figure 1. Location map of counties studied and sampling points.

Environmental variables

Fifteen  environmental  variables  were
considered as potential predictors for estimating
codling moth distribution. These variables were
categorized into topographic, climatic, and remote
sensing variables (Table 1).

Topographic layers were derived from a 30-m
digital elevation map (DEM) of East Azarbaijan
(produced by  Azarpeymayesh  Consulting
Engineers). These data were analyzed in ArcGIS
10.3.1 to create layers of the slope, aspect,
landshape, northness, eastness, and sun index.
Slope and aspect layers (both in degrees) were
obtained from DEM using ArcGIS slope and
aspect tools. Landshape layer was created by
taking the mean elevation value (i.e., from the
DEM) in a circle with a three-cell (90-m) radius
around the sample point, and subtracting that value
from the sample point elevation using ArcGIS
10.3.1 “Raster Calculator” (Merrill et al. 2009).
Northness and eastness were generated using
Raster Calculator by taking the cosine and sine of
the aspect layer, respectively (Lestina et al. 2016).
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The sun index was calculated using slope and
aspect values as follows (Karimzadeh et al. 2014):

Sun index = -cos (aspect) x cot (slope), when 0° <
aspect < 90° or = 270°
and

Sun index = -cos (aspect) x tan (slope), when 90° <
aspect <270°

Then, these point datasets are interpolated using
the IDW algorithm in ArcGIS 10.3.1 to create
raster datasets.

Meteorological data were obtained from East
Azarbaijan Applied Meteorological Research
Center. These data were used to calculate the
mean, minimum and maximum absolute
temperatures and relative humidity (Rh), and total
precipitation per month (April, May, June, July,
August and September) for three years of the
study. Then, these point datasets are interpolated
using the inverse distance weighting (IDW)
algorithm in ArcGIS 10.3.1 to create raster layers.
Finally, the average of each variable was taken
from three layers using the cell statistics tool in
ArcGIS 10.3.1.
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Normalized difference vegetation index (NDVI)
was the remote sensing variable studied.
Multispectral Landsat-8 (OLI / TIRS-2018) with
30-m accuracy was used to produce this index. For
this purpose, after applying radiometric and
atmospheric corrections, a mosaic image was

prepared for the study area. Then NDVI was
calculated using the following formula 1 and by
spectral indices tool of ENVI 5.3 software.

1) NDVI= (Near Infrared - Red)/ (Near
Infrared + Red)

Table 1. Environmental variables used for modeling the suitable habitat of codling moth in East Azarbaijan province.

Data Source Category Variables Description Unit Abbreviations
meteorological Climatic Mean temperature per month Degree tmean
stations Celsius
Maximum absolute temperature per Degree tmax
month Celsius
Minimum absolute temperature per Degree tmin
month Celsius
Mean relative humidity per month Percentage rhmean
Maximum absolute relative humidity Percentage rhmax
per month
Minimum absolute relative humidity per  Percentage rhmin
month
Total precipitation per month Millimeter Precipitation
SRTM Topographic The elevation of each cell Meter Elevation
The degree slope of each cell Degree Slope
The compass direction that the slope Degree Aspect
faces in each cell
The relative elevation of the Meter Landshape
georeferenced plot to its surroundings
North-south linear variable of direction ~ Degree Northness
in each cell
East-west linear variable of direction in ~ Degree Eastness
each cell
Amount of solar energy received at each - Sun index
point based on its slope and aspect
Landsat Remote sensing  Difference between near-infrared - NDVI

(which vegetation strongly reflects) and
red bands (which vegetation absorbs)

MaxEnt modeling

A MaxEnt modeling algorithm was used to
predict the distribution of codling moth because it
is a presence-only model which is suitable for
occurrence data in this study. To determine which
variables are significantly related to the
distribution of codling moth, initial models were
run using environmental variables of climatic and
topographic separately. The jackknife test in the
MaxEnt was used to evaluate the influence of each
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environmental variable on the potential distribution
of codling moth. Cross-correlation between
variables was also performed and only one variable
from each set of highly correlated variables
(Pearson correlation coefficient |r|] > 0.75) was
included in the models. The predictive power of
each variable in the Jackknife test as well as their
relationship with codling moth biology was
considered to remove or include variables in the
final model. After specifying the most significant
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variables in climatic and topographic categories,
the subsequent model was run to combine
variables of these two categories and determine
those that would be included in the final model.
The NDVI index was integrated at the end to
evaluate its importance in improving the prediction
capability of the executed model with climatic and
topographic variables.

One of the limitations of presence-only data is
sampling bias, which can lead to inaccurate
predictions. Since the data collection in this study
was not random, the Gaussian Kernel Density tool
in the SDMToolbox of ArcGIS 10.3.1 was used to
generate a bias layer to account for potential
sampling bias (Lestina et al. 2016). Models were
averaged across 10 replicates using the bootstrap
procedure. In this method, 75 % of the presence
points were randomly used to construct the model
and the remaining 25 % were used to evaluate the
results of the model.

Model performance was evaluated using the
area under the ROC curve (AUC). ROC is an
abbreviation of “receiver operating characteristic”.
AUC measures the probability that a random
presence site is ranked above background (or
pseudo-absence) points. Models with random
predictions have an AUC value of 0.5. High-

performance models have an AUC value greater
than 0.8 and are ideal for interpreting species-
environment relationships.

Results
MaxEnt models

Figures 2 and 3 show the results of the
jackknife test for the models with topographic and
climatic variables, respectively. Blue shades show
the individual importance of each variable when
used in isolation, while green shades show the
model performance when each variable is excluded
from the model. Red shades also indicate the
performance of the model created using all
variables. According to the results of the jackknife
test, cross-correlations (Tables 2 and 3) and the
importance of variables in codling moth biology,
two topographic variables including elevation and
slope, 10 climatic variables including precipitation
of September, mean relative humidity of August,
the maximum temperature of May, June and July,
minimum temperature of April, May, August,
September and mean temperature of April were
selected to include in the model.

Table 2. Correlation matrix among topographic variables. Variables showing |r| > £0.75 were eliminated from the

analyses.
Variable Elevation Slope Aspect Landshape  Northness Eastness Sun index
Elevation 1
Slope 0.369 1
Aspect 0.012 0.115 1
Landshape -0.034 -0.014 0.005 1
Northness 0.021 -0.050 -0.139 0.002 1
Eastness 0.015 0.014 -0.009 -0.002 0.020 1
Sun index -0.078 0.018 0.015 0.000 0.024 0.013 1

Accuracy analysis

The AUC values of implemented models are
presented in Table 4. By using the topographic,
climatic, and topographic+climatic variables, the
AUC values were 0.840, 0.951 and 0.938,
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respectively. The model including NDVI had the
highest AUC value (0.99), which strongly supports
model predictive power and indicates the
importance of vegetation index in codling moth
distribution modeling.
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Table 3. Correlation matrix among climatic variables. Variables showing |r| > £0.75 were eliminated from the analyses.

Month T_min T_mean T_max Rh_mean Precipitation

April T_min 1

T_mean 0.659 1

T_max 0.541 0.475 1

Rh_mean -0.742 -0.579 -0.024 1

Precipitation 0.118 0.177 -0.165 -0.261
May T_min 1

T_mean 0.865 1

T_max 0.690 0.705 1

Rh_mean -0.035 -0.164 -0.320 1

Precipitation 0.079 0.183 0.285 -0.631
June T_min 1

T_mean 0.773 1

T_max 0.488 0.797 1

Rh_mean -0.711 -0.860 -0.771 1

Precipitation -0.638 -0.596 -0.617 0.669
July T_min 1

T_mean 0.913 1

T_max 0.821 0.901 1

Rh_mean -0.684 -0.754 -0.554 1

Precipitation 0.876 -0.838 -0.799 0.718
August T_min 1

T_mean 0.899 1

T_max 0.740 0.879 1

Rh_mean -0.648 -0.834 -0.835 1

Precipitation -0.362 -0.627 -0.725 0.880
September T_min 1

T_mean 0.913 1

T_max 0.638 0.736 1

Rh_mean -0.669 -0.824 -0.532 1

Precipitation -0.255 -0.484 -0.435 0.828

Environmental Variable

Jackknife of regularized training gain for Cydia_pomonella

aspect
eastness
elevation
landshape
northness
slope

sun_index

0.05

010 015 0.20

0.25 030

035 040 045

regularized training gain

050 055 060

0.65

Without variable =

With anlyvariable ®
T With all variables =

Figure 2. Jackknife variable importance test of regulated gains for the model with topographic variables.
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Jackknife of regularized training gain for Cydia_pomonella

precipitation_apr
precipitation_aug
precipitation_jul
precipitation_jun
precipitation_may
precipitation_sep
rhrean_apr
rhmean_aug
rhmean_jul
rhmean_jun
rhmean_may
rhmean_sep
tmax_apr
trnax_aug
trmax_jul
tmax_jun

tmax_may

Environmental Wariable

tmax_sep
tmean_apr
tmean_aug
tmean_jul
tmean_jun
tmean_may
tmean_sep
trmin_apr
tmin_aug
tmin_jul
tmin_jun
trin_may

tmin_sep

Without variable ®
With only variahle ®
With all variables =

005 010 015 020 025 030

035 040 045 050 055

regularized training gain

Figure 3. Jackknife variable importance test of regulated gains for the model with climatic variables.

Table 4. The AUC values of models implemented in MaxEnt.

Model No. Variables AUC value
1 Topographic variables 0.840
2 Climatic variables 0.951
3 Topographic and climatic variables 0.938
4 Topographic, climatic and remote sensing variables 0.990

The importance of variables

Determining the most important environmental
variables affecting codling moth distribution was
one of the objectives of this study. Figures 4 and 5
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show the Jackknife variable importance test of
regulated gains for the models without and with the
NDVI index, respectively. In the model without
NDVI index, elevation, slope and minimum
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temperature of May, and the models with NDVI
index, NDVI, elevation, and slope were the most

important  variables moth

distribution.

affecting codling

Jackknife of regularized training gain for Cydia_pomonella
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7 With all variables =

010 015 020 0.25 030 035 040 045 050 055 060 065 0.70
regularized training gain

Figure 4. Jackknife variable importance test of regulated gains for the model with topographic+climatic variables.
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tmax_may
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Environmental Variable

tmean_apr
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1.2

1.4
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regularized training gain

Figure 5. Jackknife variable importance test of regulated gains for the model with topographic+climatic+remote

sensing variables.

Table 5 presents the percentage contribution of
each variable and its permutation importance in the
models without and with NDVI. In the model
without NDVI, the slope was the variable with the
most contribution (31%) followed by precipitation
of September (17.4%), mean temperature of May

(16.4%) and elevation (16.3%). In the model with
the RS variable, NDVI was the most contributed
variable with 92.3% contribution followed by
precipitation of September (2%), slope (1.8%),
minimum temperature of May (1.3%) and mean
temperature of April (1.1%). The Jackknife
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variable importance test also showed that these
variables had higher predictive importance than

other variables (Figures 4 and 5).

Table 5. Permutation importance (percentage) of each variable in the models without and with RS variable, NDVI.

Model Variable Percent contribution

Model without NDVI Slope 31.0
Precipitation of September 174
Minimum temperature of May 16.4
Elevation 16.3
Maximum temperature of May 55
Mean RH of August 3.9
Maximum temperature of September 3.1
Maximum temperature of July 2.7
Mean temperature of April 2.2
Maximum temperature of June 0.9
Minimum temperature of April 0.6
Minimum temperature of August 0.0

Model with NDVI NDVI 92.3
Precipitation of September 2.0
Slope 1.8
Minimum temperature of May 1.3
Mean temperature of April 11
Elevation 0.6
Maximum temperature of September 0.3
Mean RH of August 0.1
Minimum temperature of August 0.1
Maximum temperature of June 0.1
Maximum temperature of July 0.1
Maximum temperature of May 0.1
Minimum temperature of April 0.0

Figures 6 and 7 show the response curves of the
variables with more percentage contribution in the
models without and with NDVI, respectively. The
response curves indicated that the frequency of
codling moth increased in the ranges of 0 - 7 mm
precipitation in September, -1 — 2 degrees of slope,
3 — 6.1 °C of the minimum temperature of May,
200 — 1300 m of elevation, 5 — 7.9 °C of the mean
temperature of April and 0.2 — 0.62 NDVI.

Predicted distribution map
Figures 6 and 7 show the predicted distribution
maps of codling moth using models without and
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with NDVI. Warmers colors (red) and cooler
colors (blue) on the maps indicate the more
suitable and less suitable areas, respectively. High
environmental suitability was predicted for areas
within the northern portions of East Azarbaijan
province in the model created without NDVI (Fig.
8). The predicted suitable area was significantly
restricted with the addition of the RS variable (Fig.
9).
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climatic and remote sensing variables.
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Figure 8. Predicted distribution map for codling moth using bioclimatic and topographic variables. Blue color indicates
less suitable sites, while red color indicates more suitable sites.
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Figure 9. Predicted distribution map for codling moth using bioclimatic, topographic, and remote sensing variables.
Blue color indicates less suitable sites, while red color indicates more suitable sites.
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Discussion

In this study, we used the MaxEnt machine
learning method for codling moth niche modeling
and assessing the effect of environmental variables
on codling moth distribution patterns. Codling
moth occurrence data were collected from apple-
growing regions over three years. In addition to
climatic variables, the topographic and remote
sensing variables were also taken into account. The
high AUC value (0.99) indicated that the model
performed well and accurately. Predicted
distribution areas for codling moth using
bioclimatic and topographic variables confirmed
with the currently known occurrence regions.

To facilitate pest management programs,
accurate models are needed to determine the
potential distribution of economically important
pests. Other studies present the global potential
risk of distribution of codling moth using
correlative and mechanistic niche models (Kumar
et al. 2015; Zhu et al. 2017; Jiang et al. 2018). But,
our study is the first on a local scale that used
topographic and remote sensing variables along
with climatic variables which are commonly used
in studies. However, there are some other factors
such as host availability that affect the potential
distribution of codling moth which have not been
considered in this study and should be taken into
account in future models.

All four models generated in our study
accurately predicted codling moth habitat
suitability (AUC > 0.8), but the model including
NDVI, had the highest AUC value. Models did not
predict suitable habitat in regions located in high
elevations primarily because of the shorter
photoperiod in these areas and lack of chilling
requirement (<60 d at <10°C) in these areas for the
codling moth to break diapause (Kumar et al.
2015).

NDVI, slope, precipitation of September, mean
temperature of May and elevation were the top
environmental variables associated with codling
moth distribution. Kumar et al. (2015) and Jones et
al. (2013) also showed a strong influence of
elevation on the biology and distribution of codling
moth. While Zhu et al. (2017) in studying codling

moth establishment in China, introduced human
footprint, annual temperature range, precipitation
of wettest quarter, and degree days >10 °C as the
most important predictors associated with codling
moth distribution.

In the studies, the potential global distribution
of codling moth was studied, and different
variables were detected as the most important
predictors. Jiang et al. (2018) used MaxEnt to
predict the potential global wusing global
accessibility data, apple yield data, elevation data
and 19 bioclimatic variables. Their results
indicated that global accessibility, mean
temperature of the coldest quarter, precipitation of
the driest month, annual mean temperature and
apple yield were the most important environmental
predictors associated with the global distribution of
codling moths. Average annual temperature and
latitude were the main environmental variables
associated with codling moth distribution at the
global level in another study (Kumar et al. 2015).
Comparing these results with the results of the
present study indicated that different variables may
affect the spatial distribution of codling moth on
the local and global scales.

Kumar et al. (2015) recommended that the
results of niche modeling studies should be
interpreted cautiously because niche model
predictions may be affected by the quality of
occurrence data, sampling bias, resolution of
spatial data layers, species characteristics, and
spatial autocorrelation. Phillips et al. (2004)
showed that MaxEnt is substantially superior to the
standard methods, performing well with fairly few
presence data, particularly when regularization is
employed. They also showed that the models
generated by MaxEnt can be easily interpreted by
human experts, a property of great practical
importance.

Apple is an economically important crop in
East Azarbaijan Province and codling moth is the
most destructive and economically important
insect pest of apple. Understanding the impact of
spatially heterogeneous environmental factors on
the codling moth distribution is fundamental for
the management of this pest. The results of this
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study indicated that along with the climatic and
topographic variables like temperature,
precipitation, and elevation, the vegetation patterns
at a landscape level play a key role in codling moth
distribution. So that NDVI was identified as the
most important contributor to the MaxEnt model
and improved model performance. This method
can also be used for other important agricultural
pests of Iran. The distribution map obtained in
MaxEnt provided an important tool for identifying
potential risk zones of codling moth. This map can
assist managers in forecasting and planning control
measures and therefore, effective management of
current infestations of codling moth. In other
words, these distribution maps can provide
baseline information for the development and
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